The role of reactive oxygen species (ROS) in bladder cancer progression remains an unexplored field. Expression levels of enzymes regulating ROS levels are often altered in cancer. Search of publicly available micro-array data reveals that expression of mitochondrial manganese superoxide dismutase (Sod2), responsible for the conversion of superoxide (O 2 -. ) to hydrogen peroxide (H 2 O 2 ), is consistently increased in high grade and advanced stage bladder tumors. Here we aim to identify the role of Sod2 expression and ROS in bladder cancer. Using an in vitro human bladder tumor model we monitored the redox state of both non-metastatic (253J) and highly metastatic (253J B-V) bladder tumor cell lines. 253J B-V cells displayed significantly higher Sod2 protein and activity levels compared to their parental 253J cell line. The increase in Sod2 expression was accompanied by a significant decrease in catalase activity, resulting in a net increase in H 2 O 2 production in the 253J B-V line. Expression of pro-metastatic and -angiogenic factors, matrix metalloproteinase 9 (MMP-9) and vascular endothelial derived growth factor (VEGF), respectively, were similarly upregulated in the metastatic line. Expression of both MMP-9 and VEGF were shown to be H 2 O 2 -dependent, as removal of H 2 O 2 by overexpression of catalase attenuated their expression. Similarly, expression of catalase effectively reduced the clonogenic activity of 253J B-V cells. These findings indicate that metastatic bladder cancer cells display an altered antioxidant expression profile, resulting in a net increase in ROS production, which leads to the induction of redox-sensitive protumorigenic and pro-metastatic genes such as VEGF and MMP-9.
Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, primarily manifesting as neurological disorders. HCMV infection alters expression of cellular microRNAs (miRs These results suggest that Cdc25a promotes HCMV replication and elevation of Cdc25a levels after HCMV infection are due in part to HCMV-mediated repression of miR-21. Thus, miR-21 is an intrinsic antiviral factor that is modulated by HCMV infection. This suggests a role for miR-21 downregulation in the neuropathogenesis of HCMV infection of the developing CNS. IMPORTANCEHuman cytomegalovirus (HCMV) is a ubiquitous pathogen and has very high prevalence among population, especially in China, and congenital HCMV infection is a major cause for birth defects. Elucidating virus-host interactions that govern HCMV replication in neuronal cells is critical to understanding the neuropathogenesis of birth defects resulting from congenital infection. In this study, we confirm that HCMV infection downregulates miR-21 but upregulates Cdc25a. Further determined the negative effects of cellular miRNA miR-21 on HCMV replication in neural progenitor/stem cells and U-251MG glioblastoma/astrocytoma cells. More importantly, our results provide the first evidence that miR-21 negatively regulates HCMV replication by targeting Cdc25a, a vital cell cycle regulator. We further found that viral gene products of IE1, pp71, and UL26 play roles in inhibiting miR-21 expression, which in turn causes increases in Cdc25a and benefits HCMV replication. Thus, miR-21 appears to be an intrinsic antiviral factor that represents a potential target for therapeutic intervention.
BackgroundHuman cytomegalovirus (HCMV) encodes microRNAs (miRNAs) that function as post-transcriptional regulators of gene expression during lytic infection in permissive cells. Some miRNAs have been shown to suppress virus replication, which could help HCMV to establish or maintain latent infection. However, HCMV miRNA expression has not been comprehensively examined and compared using cell culture systems representing permissive (lytic) and semi-permissive vs. non-permissive (latent-like) infection.MethodsViral miRNAs levels and expression kinetics during HCMV infection were determined by miRNA-specific stem-loop RT-PCR. HCMV infected THP-1 (non-permissive), differentiated THP-1 (d-THP-1, semi-permissive) and human embryo lung fibroblasts (HELs, fully-permissive) were examined. The impact of selected miRNAs on HCMV infection (gene expression, genome replication and virus release) was determined by Western blotting, RT-PCR, qPCR, and plaque assay.ResultsAbundant expression of 15 HCMV miRNAs was observed during lytic infection in HELs; highest peak inductions (11- to 1502-fold) occurred at 48 hpi. In d-THP-1s, fourteen mRNAs were detected with moderate induction (3- to 288-fold), but kinetics of expression was generally delayed for 24 h relative to HELs. In contrast, only three miRNAs were induced to low levels (3- to 4-fold) during quiescent infection in THP-1s. Interestingly, miR-UL70-3p was poorly induced in HEL (1.5-fold), moderately in THP-1s (4-fold), and strongly (58-fold) in d-THP-1s, suggesting a potentially specific role for miR-UL70-3p in THP-1s and d-THP-1s. MiR-US33, -UL22A and -UL70 were further evaluated for their impact on HCMV replication in HELs. Ectopic expression of miR-UL22A and miR-UL70 did not affect HCMV replication in HELs, whereas miR-US33 inhibited HCMV replication and reduced levels of HCMV US29 mRNA, confirming that US29 is a target of miR-US33.ConclusionsViral miRNA expression kinetics differs between permissive, semi-permissive and quiescent infections, and miR-US33 down-regulates HCMV replication. These results suggest that miR-US33 may function to impair entry into lytic replication and hence promote establishment of latency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.