Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic technique that can induce the regression of targeted lesions via generating excess cytotoxic reactive oxygen species. However, due to the limited penetration depth of visible excitation light and the intrinsic hypoxia microenvironment of solid tumors, the efficacy of PDT in the treatment of cancer, especially deep-seated or large tumors, is unsatisfactory. Herein, we developed an efficient in vivo PDT system based on a nanomaterial, dihydrolipoic acid coated gold nanocluster (AuNC@DHLA), that combined the advantages of large penetration depth in tissue, extremely high two-photon (TP) absorption cross section (σ 2 ∼ 10 6 GM), efficient ROS generation, a type I photochemical mechanism, and negligible in vivo toxicity. With AuNC@DHLA as the photosensitizer, highly efficient in vivo TP-PDT has been achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.