Alzheimer’s disease (AD) is a most common age-related neurodegenerative disease. AD is characterized by a progressive loss of neurons causing cognitive dysfunction. The cerebellum is closely associated with integration of movement, including motor coordination, control, and equilibrium. In the present study, we evaluated the effect of tread-mill exercise on the survival of Purkinje neurons in relation with reactive astrocyte in the cerebellum using Aβ25–35–induced AD rats. AD was induced by a bilateral intracerebroventricular (ICV) injection of Aβ25–35. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks, starting 2 days after Aβ25–35 injection. In the present results, ICV injection of Aβ25–35 deteriorated motor coordination and balance. The number of calbindin-positive cells in the cerebellar vermis was decreased and glial fibrillary acidic protein (GFAP) expression in the cerebellar vermis was increased in the Aβ25–35-induced AD rats. Treadmill exercise improved motor coordination and balance. Treadmill exercise increased the number of Purkinje neurons and suppressed GFAP expression in the cerebellar vermis. The present study demonstrated that treadmill exercises alleviated dysfunction of motor coordination and balance by reduction of Purkinje cell loss through suppressing reactive astrocytes in the cerebellum of AD rats. The present study provides the possibility that treadmill exercise might be an important therapeutic strategy for the symptom improvement of AD patients.
Periventricular leukomalacia (PVL) is a common white matter lesion affecting the neonatal brain. PVL is closely associated with cerebral palsy (CP) and characterized by increase in the number of astrocytes, which can be detected by positivity for glial fibrillary acidic protein (GFAP). Change in myelin basic protein (MBP) is an early sign of white matter abnormality. Maternal or placental infection can damage the neonatal brain. In the present study, we investigated the effects of treadmill walking exercise on GFAP and MBP expressions in rats with maternal lipopolysaccharide (LPS)-induced PVL. Immunohistochemistry was performed for the detection of GFAP and MBP. The present results showed that intracervical maternal LPS injection during pregnancy increased GFAP expression in the striatum and decreased MBP expression in the corpus callosum of rats. The results also showed that treadmill walking exercise suppressed GFAP expression and enhanced MBP expression in the brains of rats with maternal LPS-induced PVL. The present study revealed that treadmill walking exercise is effective for the suppressing astrogliosis and hypomyelination associated with PVL. Here in this study, we showed that treadmill walking exercise may be effective therapeutic strategy for alleviating the detrimental effects of CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.