This study aimed to determine the interaction among the neck, trunk, and lower extremities on the non-paretic side in head rotation along with non-paretic-side weight shifting of stroke patients. To compare stroke patients' ability to control posture through muscle activity variation related to pertubation during head rotation along with the non-paretic limb. Methods: We tested 15 hemiplegic patients and 15 normal individuals. Each group's muscle activity was measured by electromyography in neutral head position and head rotation position. We compared each group's resu lt based on measured values in patients' non-paretic neck muscles, trunk muscles, and lower limbs muscles activation. Results: The study showed that muscle activity increased in the sternocleidomastoid muscle (102.26%, 53.00%), splenius capitis muscle (97.93%, 54.93%), erector spinae muscle (241.00%, 127.60%), external oblique abdominal muscle (256.66%, 152.00%), and internal oblique abdominal muscle (252.80%, 152.6%), peroneus longus muscle (117.53%, 137.13%) and gastrocnemius muscle (119.06%, 137.20%), while the results for the sternocleidomastoid muscle, splenius capitis muscle, erector spinae muscle, external oblique abdominal muscle, internal oblique abdominal muscle, peroneus longus muscle, and gastrocnemius muscle showed a statistically significant difference (p< 0.05). Conclusion: It is hard for stroke patients to engage in normal movement control under suggested conditions because of the insufficient movement against gravity on the stroke patient's non-paretic side and impaired cooperative patterns. To solve these problems, patients need their bodies to improve through effective movement, resulting in advanced control of their effective and functional activity.
Purpose: This study aimed to evaluate changes in the balance ability of patients whose head positions were altered due to stroke. Subjects were divided into three groups to determine the effects of the training on dynamic balance and gait. Methods: Forty-two stroke patients were enrolled. The Visual Feedback Training (VFT) group performed four sets of exercises per training session using a Sensoneck device, while the Active Range of Motion (ART) group performed eight sets per training session after receiving education from an experienced therapist. The Visual Feedback with Active Range of Motion (VAT) group performed four sets of active range of motion and two sets of visual-feedback training per session using a Sensoneck device. The training sessions were conducted three days a week for eight weeks. Results: The comparison of changes in dynamic balance ability showed that a significant difference in the total distance of the body center was found in the VFT group (p< 0.05) and Significant differences were found according to the training period (p< 0.05). The comparison of the 10 m walk test showed that the main effect test, treatment period and interactions between group had statistically significant differences between the three groups (p< 0.05). Conclusion: Head-adjustment training using visual feedback can improve the balance ability and gait of stroke patients. These results show that coordination training between the eyes and head with visual feedback exercises can be used as a treatment approach to affect postural control through various activities involving the central nervous system.
Purpose: This study aimed to determine the interaction among the neck, trunk, and lower extremities on the non-paretic side in head rotation along with non-paretic-side weight shifting of stroke patients. To compare stroke patients' ability to control posture through muscle activity variation related to pertubation during head rotation along with the non-paretic limb. Methods: We tested 15 hemiplegic patients and 15 normal individuals. Each group's muscle activity was measured by electromyography in neutral head position and head rotation position. We compared each group's resu lt based on measured values in patients' non-paretic neck muscles, trunk muscles, and lower limbs muscles activation. Results:The study showed that muscle activity increased in the sternocleidomastoid muscle (102.26%, 53.00%), splenius capitis muscle (97.93%, 54.93%), erector spinae muscle (241.00%, 127.60%), external oblique abdominal muscle (256.66%, 152.00%), and internal oblique abdominal muscle (252.80%, 152.6%), peroneus longus muscle (117.53%, 137.13%) and gastrocnemius muscle (119.06%, 137.20%), while the results for the sternocleidomastoid muscle, splenius capitis muscle, erector spinae muscle, external oblique abdominal muscle, internal oblique abdominal muscle, peroneus longus muscle, and gastrocnemius muscle showed a statistically significant difference (p< 0.05). Conclusion: It is hard for stroke patients to engage in normal movement control under suggested conditions because of the insufficient movement against gravity on the stroke patient's non-paretic side and impaired cooperative patterns. To solve these problems, patients need their bodies to improve through effective movement, resulting in advanced control of their effective and functional activity.
The purpose of this study was to investigate the effects of neck immobilization with collar orthosis a driving performance. Previous studies have not investigated the effects of neck immobilization on driving performance during the simulation driving. The driving scenario consists of straight and right rotation . The parameters of driving performance included the number of road edge excursions, centerline crossings, and steering angle. Data was analyzed with the Wilcoxon signed-rank test to compare collar group and non-collar group. As a results of simulator driving, steering angle of with-collar group was significantly higher than the without-collar during right rotation. We suggest that neck immobilization has negative effect on driving performance because of substitute motion. We suggest that patients wearing neck collar orthotics should be careful when they drive on road.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.