Proteomics has become an important field in molecular sciences, as it provides valuable information on the identity, expression levels, and modification of proteins. For example, cancer proteomics unraveled key information in mechanistic studies on tumor growth and metastasis, which has contributed to the identification of clinically applicable biomarkers as well as therapeutic targets. Several cancer proteome databases have been established and are being shared worldwide. Importantly, the integration of proteomics studies with other omics is providing extensive data related to molecular mechanisms and target modulators. These data may be analyzed and processed through bioinformatic pipelines to obtain useful information. The purpose of this review is to provide an overview of cancer proteomics and recent advances in proteomic techniques. In particular, we aim to offer insights into current proteomics studies of brain cancer, in which proteomic applications are in a relatively early stage. This review covers applications of proteomics from the discovery of biomarkers to the characterization of molecular mechanisms through advances in technology. Moreover, it addresses global trends in proteomics approaches for translational research. As a core method in translational research, the continued development of this field is expected to provide valuable information at a scale beyond that previously seen.
Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.
Insulin in the brain is a well-known critical factor in neuro-development and regulation of adult neurogenesis in the hippocampus. The abnormality of brain insulin signaling is associated with the aging process and altered brain plasticity, and could promote neurodegeneration in the late stage of Alzheimer’s disease (AD). The precise molecular mechanism of the relationship between insulin resistance and AD remains unclear. The development of phosphoproteomics has advanced our knowledge of phosphorylation-mediated signaling networks and could elucidate the molecular mechanisms of certain pathological conditions. Here, we applied a reliable phosphoproteomic approach to Neuro2a (N2a) cells to identify their molecular features under two different insulin-resistant conditions with clinical relevance: inflammation and dyslipidemia. Despite significant difference in overall phosphoproteome profiles, we found molecular signatures and biological pathways in common between two insulin-resistant conditions. These include the integrin and adenosine monophosphate-activated protein kinase pathways, and we further verified these molecular targets by subsequent biochemical analysis. Among them, the phosphorylation levels of acetyl-CoA carboxylase and Src were reduced in the brain from rodent AD model 5xFAD mice. This study provides new molecular signatures for insulin resistance in N2a cells and possible links between the molecular features of insulin resistance and AD.
Fibrillar collagen and elastic fibers are the main components of the dermal extracellular matrix (ECM), which confers mechanical strength and resilience to the skin. In particular, type I collagen produced by fibroblasts is the most abundant collagen that determines the general strength of the ECM, thereby contributing to the prevesntion of the skin-aging process. Although the natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone) exerts numerous beneficial effects, including antiviral, anticancer, anti-inflammatory and wound-healing effects in diverse cells, the effect of emodin on collagen expression or skin aging is not fully understood. The present study demonstrated that exposure to emodin increased type I collagen synthesis in a concentration-and time-dependent manner in Hs27 human dermal fibroblasts. Subsequent experiments showed that emodin strongly increased collagen type I levels without altering cell proliferation or cellular matrix metalloproteinase-1 (MMP-1) expression. Additionally, it was determined that increased phosphorylation of 5' AMP-activated protein kinase, following emodin treatment, was responsible for increased type I collagen synthesis. These findings clearly indicate that emodin plays an important role in collagen type I synthesis in dermal fibroblasts, thereby making it a potential drug candidate for treating skin aging and wrinkles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.