In this study, we first fabricated a new GaAs-based dielectric-supported air-gap microstrip lines (DAMLs) by the surface microelectromechanical systems (MEMS) technology, and then fabricated the low-pass filter (LPF) for the Ka-band using those DAMLs. We elevated the signal lines from the surface in order to reduce the substrate dielectric loss and to obtain low losses at the millimeter-wave frequency band with a wide impedance range. We fabricated LPFs with DAMLs for Ka-bands, and we were able to reduce the insertion loss of LPFs by reducing the dielectric loss of the DAMLs. Miniaturization is essential for integrating LPFs with active devices, so we fabricated a LPF with the slot on the ground metal to reduce the size of the LPF. We compared the characteristics of the LPF with a slot and the LPF without the slot.
Islet transplant survival may be safely and accurately monitored using magnetic resonance imaging with the Resovist. We found in this study that pixel number may correlate more closely than the number of contrast spots with the number of islets transplanted.
It is known that PSM pattern edge (MoSiON/Qz boundary) of EA-PSM mask is the weakest point against Haze occurrence in real mass production. Based on the understanding of these phenomena, we have developed very efficient ways to protect PSM pattern edge from Haze defect formation even after normal SPM cleaning processes. Oxide layer formulated on the PSM pattern (including pattern top and side) is actively trapping chemical ions existing on the surface and inside bulk of mask substrate, preventing their motion or diffusion toward Haze defect creation during laser exposure. As a result, we are able to reduce cleaning frequency of each EA-PSM mask set without Haze issues and thereby dramatically expand their life time in real mass production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.