The global distribution, abundance, and diversity of microscopic freshwater algae demonstrate an ability to overcome significant barriers such as dry land and oceans by exploiting a range of biotic and abiotic colonization vectors. If these vectors are considered unlimited and colonization occurs in proportion to population size, then globally ubiquitous distributions are predicted to arise. This model contrasts with observations that many freshwater microalgal taxa possess true biogeographies. Here, using a concatenated multigene data set, we study the phylogeography of the freshwater heterokont alga Synura petersenii sensu lato. Our results suggest that this Synura morphotaxon contains both cosmopolitan and regionally endemic cryptic species, co-occurring in some cases, and masked by a common ultrastructural morphology. Phylogenies based on both proteins (seven protein-coding plastid and mitochondrial genes) and DNA (nine genes including ITS and 18S rDNA) reveal pronounced biogeographic delineations within phylotypes of this cryptic species complex while retaining one clade that is globally distributed. Relaxed molecular clock calculations, constrained by fossil records, suggest that the genus Synura is considerably older than currently proposed. The availability of tectonically relevant geological time (10⁷-10⁸ years) has enabled the development of the observed, complex biogeographic patterns. Our comprehensive analysis of freshwater algal biogeography suggests that neither ubiquity nor endemism wholly explains global patterns of microbial eukaryote distribution and that processes of dispersal remain poorly understood.
The genus Mallomonas, a common and often abundant member of the planktic community in many freshwater habitats worldwide, consists of 180 species divided into 19 sections and 23 series. Classification of species is based largely on ultrastructural characteristics of the siliceous scales and bristles that collectively form a highly organized covering over the cell. However, the relative importance of the different siliceous features of the scales, such as the dome, V rib, and secondary structures, as well as the different types of scales, in understanding the evolution and phylogeny of the genus is little known. In this study, we investigated the scale and bristle ultrastructure, along with sequences of three genes, for 19 isolates (18 species) of Mallomonas (18 isolates were from Korean habitats). The isolates represented nine of the 19 sections. Sequences for both the nuclear SSU and LSU rDNA and plastid LSU of RUBISCO (rbcL) genes for each of the 19 Mallomonas isolates and four outgroups were determined. Bayesian and maximum-likelihood (ML) analyses of the data revealed that Mallomonas consists of two strongly supported clades. Mallomonas bangladeshica (E. Takah. et T. Hayak.) Siver et A. P. Wolfe was at the base of the first clade that included taxa from the sections Planae and Heterospinae, both of which lack a V rib on the shield of the scales. Our results indicated that the sections Planae and Heterospinae should be combined. The second clade, with Mallomonas insignis Penard and Mallomonas punctifera Korshikov at the base, contained taxa from the sections Mallomonas, Striatae, Akrokomae, Annulatae, Torquatae, Punctiferae, and Insignes, all of which have V ribs or well-developed marginal ribs on the scales. Sister relationships between Mallomonas and Striatae were strongly supported, but interrelations among the remaining sections were not resolved, probably due to inclusion of too few species. Our results suggest that the current classification of the genus Mallomonas at the section level will require some revision. Additional species will need to be added in future analyses.
+ ratio and the N : P ratio, but is determined by the TN concentration if a certain minimum PO 4 3concentration is present.
-The diatoms are an ecologically important group of algae that have been extensively studied by ecologists and taxonomists. However, the large-scale patterns of diatom distribution and the factors underlying this distribution are largely unknown. The aims of this study were to identify the large-scale spatial patterns of benthic diatom assemblages in Korean streams and rivers, and to assess the importance of numerous environmental factors on diatom distribution. We classified 720 study sites based on diatom flora. Benthic diatoms, water chemistry, altitude, and riparian land cover and use were characterized by multivariate analyses, Monte Carlo permutation tests, and indicator species analysis. In total, we identified 531 diatom taxa. Diatom assemblages were mostly dominated by species of the genera Achnanthes, Navicula, Nitzschia, Cocconeis, Fragilaria (Synedra included), Cymbella, Gomphonema, and Melosira. Cluster analysis partitioned all 720 sites into eight groups based on diatom species composition. Canonical correspondence analysis indicated that altitude, land cover and use, current velocity, electrical conductivity, and nutrient levels explained a significant amount of the variation in the composition of assemblages of benthic diatoms. At the national scale, a downstream ecological gradient was apparent, from fast-flowing, mostly oligotrophic highland streams to slow-flowing, mostly eutrophic lowland rivers. Our data suggest that spatial factors explain some of the variation in diatom distribution. The present investigation of the spatial patterns of benthic diatoms, the ecological determinants of diatom occurrence, and the identification of diatom indicator species contributes to development of a program for assessing the biological integrity of lotic ecosystems in Korea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.