Context:Adrenal tumors have a prevalence of around 2% in the general population. Adrenocortical carcinoma (ACC) is rare but accounts for 2–11% of incidentally discovered adrenal masses. Differentiating ACC from adrenocortical adenoma (ACA) represents a diagnostic challenge in patients with adrenal incidentalomas, with tumor size, imaging, and even histology all providing unsatisfactory predictive values.Objective:Here we developed a novel steroid metabolomic approach, mass spectrometry-based steroid profiling followed by machine learning analysis, and examined its diagnostic value for the detection of adrenal malignancy.Design:Quantification of 32 distinct adrenal derived steroids was carried out by gas chromatography/mass spectrometry in 24-h urine samples from 102 ACA patients (age range 19–84 yr) and 45 ACC patients (20–80 yr). Underlying diagnosis was ascertained by histology and metastasis in ACC and by clinical follow-up [median duration 52 (range 26–201) months] without evidence of metastasis in ACA. Steroid excretion data were subjected to generalized matrix learning vector quantization (GMLVQ) to identify the most discriminative steroids.Results:Steroid profiling revealed a pattern of predominantly immature, early-stage steroidogenesis in ACC. GMLVQ analysis identified a subset of nine steroids that performed best in differentiating ACA from ACC. Receiver-operating characteristics analysis of GMLVQ results demonstrated sensitivity = specificity = 90% (area under the curve = 0.97) employing all 32 steroids and sensitivity = specificity = 88% (area under the curve = 0.96) when using only the nine most differentiating markers.Conclusions:Urine steroid metabolomics is a novel, highly sensitive, and specific biomarker tool for discriminating benign from malignant adrenal tumors, with obvious promise for the diagnostic work-up of patients with adrenal incidentalomas.
Abstract-We present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can display a tendency towards over-simplification in the course of training. An overly pronounced elimination of dimensions in feature space can have negative effects on the performance and may lead to instabilities in the training. We focus on matrix learning in Generalized LVQ. Extending the cost function by an appropriate regularization term prevents the unfavorable behavior and can help to improve the generalization ability. The approach is first tested and illustrated in terms of artificial model data. Furthermore, we apply the scheme to benchmark classification data sets from the UCI Repository of machine learning. We demonstrate the usefulness of regularization also in the case of rank limited relevance matrices, i.e. matrix learning with an implicit, low dimensional representation of the data.
The only impact of immediate lymphoscintigraphy was the possible omission of removal of 1-2 sec-echelon nodes per patient in 5% of patients. We consider this yield too low to continue immediate lymphoscintigraphy in breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.