The approximately 10 11 viruses and microbial cells per gram of fecal matter (dry weight) in the large intestine are important to human health. The responses of three common gut bacteria species, and one opportunistic pathogen, to 117 commonly consumed foods, chemical additives, and plant extracts were tested. Many compounds, including Stevia rebaudiana and bee propolis extracts, exhibited species-specific growth inhibition by prophage induction. Overall, these results show that various foods may change the abundances of gut bacteria by modulating temperate phage and suggests a novel path for landscaping the human gut microbiome.
Temperate phage genomes are highly variable mosaic collections of genes that infect a bacterial host, integrate into the host's genome or replicate as low copy number plasmids, and are regulated to switch from the lysogenic to lytic cycles to generate new virions and escape their host. Genomes from most Bacterial phyla contain at least one or more prophages. We updated our PhiSpy algorithm to improve detection of prophages and to provide a web-based framework for PhiSpy. We have used this algorithm to identify 36,488 prophage regions from 11,941 bacterial genomes, including almost 600 prophages with no known homology to any proteins. Transfer RNA genes were abundant in the prophages, many of which alleviate the limits of translation efficiency due to host codon bias and presumably enable phages to surpass the normal capacity of the hosts' translation machinery. We identified integrase genes in 15,765 prophages (43% of the prophages). The integrase was routinely located at either end of the integrated phage genome, and was used to orient and align prophage genomes to reveal their underlying organization. The conserved genome alignments of phages recapitulate early, middle, and late gene order in transcriptional control of phage genes, and demonstrate that gene order, presumably selected by transcription timing and/or coordination among functional modules has been stably conserved throughout phage evolution. ConclusionsHere we presented an analysis of over 11,000 bacterial genomes from which we identified 36,488 prophages. Many phages appear to be limited by initiation of translation by the host's machinery, and may increase translation rates by carrying their own tRNA genes, effectively increasing the availability of both tRNAs loaded with methionine and of peptide deformylase. We have also demonstrated that phages maintain a highly conserved gene order that suggests phage genome mosaicism is limited to clusters of conserved genes rather than individual genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.