Presence and frequency of rare circulating tumor cells (CTCs) in bloodstreams of cancer patients are pivotal to early cancer detection and treatment monitoring. Here, we use a spiral microchannel with inherent centrifugal forces for continuous, size-based separation of CTCs from blood (Dean Flow Fractionation (DFF)) which facilitates easy coupling with conventional downstream biological assays. Device performance was optimized using cancer cell lines (> 85% recovery), followed by clinical validation with positive CTCs enumeration in all samples from patients with metastatic lung cancer (n = 20; 5–88 CTCs per mL). The presence of CD133+ cells, a phenotypic marker characteristic of stem-like behavior in lung cancer cells was also identified in the isolated subpopulation of CTCs. The spiral biochip identifies and addresses key challenges of the next generation CTCs isolation assay including antibody independent isolation, high sensitivity and throughput (3 mL/hr); and single-step retrieval of viable CTCs.
The need for efficient cell separation, an essential preparatory step in many biological and medical assays, has led to the recent development of numerous microscale separation techniques. This review describes the current state-of-the-art in microfluidics-based cell separation techniques. Microfluidics-based sorting offers numerous advantages, including reducing sample volumes, faster sample processing, high sensitivity and spatial resolution, low device cost, and increased portability. The techniques presented are broadly classified as being active or passive depending on the operating principles. The various separation principles are explained in detail along with popular examples demonstrating their application toward cell separation. Common separation metrics, including separation markers, resolution, efficiency, and throughput, of these techniques are discussed. Developing efficient microscale separation methods that offering greater control over cell population distribution will be important in realizing true point-of-care (POC) lab-on-a-chip (LOC) systems.
Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ∼10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.