This study investigates the engineering and mechanical properties of basalt fiber-reinforced (FRF) concrete, giving special attention to residual flexural strength and dynamic modal parameters. These properties, which have not been thoroughly investigated elsewhere, are a precursor to structural design applications for dynamic compliant structures (i.e., bridges, offshore platforms, railways, and airport pavement). Accordingly, the standard notched flexural tests have been carried out to assess the basalt fiber-reinforced concrete’s residual flexural strength with an additional 0.125%, 0.25%, 0.375%, and 0.5% of volume fraction of basalt fiber. In addition, dynamic modal tests were then conducted to determine the dynamic modulus of elasticity (MOE) and damping of the FRF concrete beams. The results indicate that concrete’s toughness and crack resistance performance are significantly improved with added fiber in basalt fiber reinforced concrete, and the optimum fiber content is 0.25%. It also exhibits the highest increment of compressive strength of 4.48% and a dynamic MOE of 13.83%. New insights reveal that although the residual flexural performance gradually improved with the addition of basalt fiber, the damping ratio had an insignificant change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.