The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone—US$166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. (Résumé d'auteur
Summary 1.Although there is ample support for positive species richness-productivity relationships in planted grassland experiments, a recent 48-site study found no diversity-productivity relationship (DPR) in herbaceous communities. Thus, debate persists about diversity effects in natural versus planted systems. Additionally, current knowledge is weak regarding the influence of evenness on the DPRs, how DPRs are affected by the variation in life-history traits among constituent species in polycultures and how DPRs differ among biomes. The impacts of these factors on DPRs in forest ecosystems are even more poorly understood. 2. We performed a meta-analysis of 54 studies to reconcile DPRs in forest ecosystems. We quantified the net diversity effect as log effect size [ln(ES)], the log ratio of the productivity in polycultures to the average of those in monocultures within the same type of mixture, site condition and stand age of each study. The first use of a boosted regression tree model in meta-analysis, a useful method to partition the effects of multiple predictors rather than relying on vote-counting of individual studies, unveiled the relative influences of individual predictors. 3. Global average ln(ES) was 0.2128, indicating 23.7% higher productivity in polycultures than monocultures. The final model explained 21% of the variation in ln(ES). The predictors that substantially accounted for the explained variation included evenness (34%), heterogeneity of shade tolerance (29%), richness (13%) and stand age (15%). In contrast, heterogeneity of nitrogen fixation and growth habits, biome and stand origin (naturally established versus planted) contributed negligibly (each £ 4%). Log effect size strongly increased with evenness from 0.6 to 1 and with richness from 2 to 6. Furthermore, it was higher with heterogeneity of shade tolerance and generally increased with stand age. 4. Synthesis. Our analysis is, to our knowledge, the first to demonstrate the critical role of species evenness, richness and the importance of contrasting traits in defining net diversity effects in forest polycultures. While testing the specific mechanisms is beyond the scope of our analysis, our results should motivate future studies to link richness, evenness, contrasting traits and life-history stage to the mechanisms that are expected to produce positive net biodiversity effects such as niche differentiation, facilitation and reduced Janzen-Connell effects.
Colon cancer has been viewed as the result of progressive accumulation of genetic and epigenetic abnormalities. However, this view does not fully reflect the molecular heterogeneity of the disease. We have analyzed both genetic (mutations of BRAF, KRAS, and p53 and microsatellite instability) and epigenetic alterations (DNA methylation of 27 CpG island promoter regions) in 97 primary colorectal cancer patients. Two clustering analyses on the basis of either epigenetic profiling or a combination of genetic and epigenetic profiling were performed to identify subclasses with distinct molecular signatures. Unsupervised hierarchical clustering of the DNA methylation data identified three distinct groups of colon cancers named CpG island methylator phenotype (CIMP) 1, CIMP2, and CIMP negative. Genetically, these three groups correspond to very distinct profiles. CIMP1 are characterized by MSI (80%) and BRAF mutations (53%) and rare KRAS and p53 mutations (16% and 11%, respectively). CIMP2 is associated with 92% KRAS mutations and rare MSI, BRAF, or p53 mutations (0, 4, and 31% respectively). CIMP-negative cases have a high rate of p53 mutations (71%) and lower rates of MSI (12%) or mutations of BRAF (2%) or KRAS (33%). Clustering based on both genetic and epigenetic parameters also identifies three distinct (and homogeneous) groups that largely overlap with the previous classification. The three groups are independent of age, gender, or stage, but CIMP1 and 2 are more common in proximal tumors. Together, our integrated genetic and epigenetic analysis reveals that colon cancers correspond to three molecularly distinct subclasses of disease.classification ͉ DNA methylation ͉ genetic alterations C olorectal cancer (CRC) is the second and fourth most common cancer in men and women, respectively (1). Approximately 70% of colorectal cancers are sporadic, with no inherited predisposition. A stepwise progression model involving two distinct genetic pathways has been proposed to explain the etiology of colon cancer from benign neoplasm to adenocarcinoma (2). One class of genetic alterations involves mutations of oncogenes and tumor-suppressor genes that directly control cell birth and death, such as APC, KRAS, and p53. Another involves mutations of DNA mismatch repair genes.In addition to these genetic alterations, cancer initiation and promotion can occur by epigenetic mechanisms (3). CpG methylation is the best characterized epigenetic change in the mammalian genome. Whereas CpG dinucleotides are underrepresented in the mammalian genome, approximately half of all human genes contain a CpG-rich region called a ''CpG island'' in the 5Ј area, often encompassing the promoter and transcription start site of the associated gene (4, 5). Gene silencing by hypermethylation of CpG islands (including tumor-suppressor genes) is a common event in tumors. Further, hypermethylation of specific genes such as ER␣, MYOD1, and N33 occurs in the normal colon tissue of aging individuals (6, 7), and hypermethylation of the secreted frizzled-relat...
Boreal mixedwoods (BMWs) are the most productive and diverse forest ecosystems in North American boreal forests. A good understanding of BMW stand dynamics is a prerequisite for sustainable management of these vital resources. In this review, we describe the patterns and processes of BMWs created by natural disturbances, examine the biotic and abiotic factors that influence these patterns and processes, and discuss forest management implications related to stand development. Based on distinct structural and developmental features, BMW stand development is characterized by four stages: stand initiation, stem exclusion, canopy transition, and gap dynamics. These four stages of stand development provide a conceptual model of complex developmental processes. However, multiple pathways are possible during BMW stand development depending on disturbances, neighbour effects, and stand condition. Boreal mixedwood management at the stand level needs to emulate the natural development process and target a specific stand structure and species composition. Alternative silvicultural techniques are available to achieve the multiple objectives of BMWs. Further considerations at various temporal and spatial scales and at the operational level are required to ensure sustainable BMW management. Key words: stand dynamics, boreal mixedwoods, natural disturbance, stand structure, developmental process, management implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.