Biotransformation of PFOS-precursors (PreFOS) may contribute significantly to the level of perfluorooctanesulfonate (PFOS) in the environment. Perfluorooctane sulfonamide (PFOSA) is one of the major intermediates of higher molecular weight PreFOS. Its further degradation to PFOS could be isomer specific and thereby explain unexpected high percentages of branched (Br-) PFOS isomers observed in wildlife. In this study, isomeric degradation of PFOSA was concomitantly investigated by in vivo and in vitro tests using common carp as an animal model. In the in vivo tests branched isomers of PFOSA and PFOS were eliminated faster than the corresponding linear (n-) isomers, leading to enrichment of n-PFOSA in the fish. In contrast, Br-PFOS was enriched in the fish, suggesting that Br-PFOSA isomers were preferentially metabolized to Br-PFOS over n-PFOSA. This was confirmed by the in vitro test. The exception was 1m-PFOSA, which could be the most difficult to be metabolized due to its α-branched structure, resulting in the deficiency of 1m-PFOS in the fish. The in vitro tests indicated that the metabolism mainly took place in the fish liver instead of its kidney, and it was mainly a Phase I reaction. The results may help to explain the special PFOS isomer profile observed in wildlife.
Plant species diversity affects carbon and nutrient cycling during litter decomposition, yet the generality of the direction of this effect and its magnitude remains uncertain. With a meta-analysis including 65 field studies across the Earth’s major forest ecosystems, we show here that decomposition was faster when litter was composed of more than one species. These positive biodiversity effects were mostly driven by temperate forests but were more variable in other forests. Litter mixture effects emerged most strongly in early decomposition stages and were related to divergence in litter quality. Litter diversity also accelerated nitrogen, but not phosphorus release, potentially indicating a decoupling of nitrogen and phosphorus cycling and perhaps a shift in ecosystem nutrient limitation with changing biodiversity. Our findings demonstrate the importance of litter diversity effects for carbon and nutrient dynamics during decomposition, and show how these effects vary with litter traits, decomposer complexity and forest characteristics.
The root economics space (RES) is multidimensional and largely shaped by belowground biotic and abiotic influences. However, how root-fungal symbioses and edaphic fertility drive this complexity remains unclear.Here, we measured absorptive root traits of 112 tree species in temperate and subtropical forests of China, including traits linked to functional differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) hosts.Our data, from known mycorrhizal tree species, revealed a 'fungal-symbiosis' dimension distinguishing AM from ECM species. This divergence likely resulted from the contrasting mycorrhizal evolutionary development of AM vs ECM associations. Increased root tissue cortical space facilitates AM symbiosis, whereas increased root branching favours ECM symbiosis. Irrespective of mycorrhizal type, a 'root-lifespan' dimension reflecting aspects of root construction cost and defence was controlled by variation in specific root length and root tissue density, which was fully independent of root nitrogen content. Within this function-based RES, we observed a substantial covariation of axes with soil phosphorus and nitrate levels, highlighting the role played by these two axes in nutrient acquisition and conservation.Overall, our findings demonstrate the importance of evolved mycorrhizal symbiosis pathway and edaphic fertility in framing the RES, and provide theoretical and mechanistic insights into the complexity of root economics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.