Experimental and numerical studies of the 2D woven composite laminates under low-velocity impact with different energy are discussed in this paper. The traditional Hashin failure criteria are improved to cover the failure modes of fiber rupture and delamination. It is found that the damage level depend on the impact energy. The matrix deformation is the main reason of delamination. The simulating results are in good agreement with the experimental phenomenon observed by nondestructive examination (ultrasonic C scanning) and cross-section examination
In order to get a deep understanding of the effect of internal electrical field on the electrical breakdown properties of contact materials, two kinds of W-Cu and Cr-Cu joints were prepared in a vacuum sintering furnace. The vacuum breakdown tests were respectively performed at the interface of two joints and pure metal ends in an arc extinguishing chamber, and the surface morphologies after electrical breakdown 50 times were characterized by a scanning electron microscopy equipped with an energy dispersive spectroscopy. The results show that the breakdown strength at the interface is much larger than that of pure metal ends, and the breakdown site deviates from the interface. It is suggested that the existence of internal electrical field at the interface of two contact metals changes the electronic structure, and, thus, the electrical breakdown behavior is influenced.
The CuWCr composites were respectively fabricated by the mixture of W and Cr and WCr alloyed powders, followed by sintering and infiltration. Vacuum arcs on CuWCr composites were observed by a digital high-speed video camera. The morphologies of the composites before and after arc erosion were characterized by a scanning electron microscope. The results show that the microstructure CuWCr composites prepared by WCr alloyed powders becomes finer and more uniform, and, thus, has good characteristics of diffusive arcs and arc erosion resistance. In addition, the composite prepared by WCr alloyed powders has excellent electrical properties such as high breakdown voltage, low chopping current and long arc life. Arc erosion zones of the CuWCr composite fabricated by WCr alloyed powders become more dispersive and uniform on the surfaces with some shallow erosion pits. During the course of arc evolution, the dispersed arcs are caused by the split of electrical arc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.