Background
Sperm growth and maturation are correlated with the expression levels of Leucine-rich repeat and WD repeat-containing protein 1 (LRWD1), a widely expressed protein in the human testicles. The decrease in LRWD1 cellular level was linked to the reduction in cell growth and mitosis and the rise in cell microtubule atrophy rates. Since DNA methylation has a major regulatory role in gene expression, this study aimed at exploring the effect of the modulation of DNA methylation on LRWD1 expression levels.
Results
The results revealed the presence of a CpG island up of 298 bps (− 253 ~ + 45) upon LRWD1 promoter in NT2/D1 cells. The hypermethylation of the LRWD1 promoter was linked to a reduction in the transcription activity in NT2/D1 cells, as indicated by luciferase reporter assay. The methylation activator, floxuridine, confirmed the decrease in the LRWD1 promoter transcriptional activity. On the other hand, 5-Aza-2′-deoxycytidine (5-Aza-dc, methylation inhibitor), significantly augmented LRWD1 promoter activity and the expression levels of mRNA and proteins. Furthermore, DNA methylation status of LRWD1 promoter in human sperm genomic DNA samples was analyzed. The results indicated that methylation of LRWD1 promoter was correlated to sperm activity.
Conclusions
Thus, the regulation of LRWD1 expression is correlated with the methylation status of LRWD1 promoter, which played a significant role in the modulation of spermatogenesis, sperm motility, and vitality. Based on these results, the methylation status of LRWD1 promoter may serve as a novel molecular diagnostic marker or a therapeutic target in males’ infertility.
The aim of the present study was to investigate the thermal injury in the liver after a minimally invasive electrosurgery technique with a copper-doped diamond-like carbon (DLC-Cu) surface coating. To effectively utilize electrosurgery in a clinical caner setting, it is necessary to suppress the thermal injury to adjacent tissues. The surface morphologies of DLC-Cu thin films were characterized using scanning electron microscopy and transmission electron microscopy. Three-dimensional liver models were reconstructed using magnetic resonance imaging to simulate the electrosurgical procedure. Our results indicated that the temperature decreased significantly when minimally electrosurgery with nanostructured DLC-Cu thin films was used, and that it continued to decrease with increasing film thickness. In an animal model, thermography revealed that the surgical temperature was significantly lower in the minimally invasive electrosurgery with DLC-Cu thin film (DLC-Cu-SS) compared to untreated electrosurgery. In addition, DLC-Cu-SS created a relatively small thermal injury area and lateral thermal effect. These results indicated that the biomedical nanostructure coating reduced excessive thermal injury, and uniformly distributed temperature in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.