In the present paper, the continuous-drive friction welding (CDFW) technology has been successfully applied to join the U75V rail steel. The base metal (BM) of U75V rail steel is lamellar pearlite, and the weld zone could be clearly divided into three subzones (i.e., heat affected zone, thermo-mechanical affected zone (TMAZ), and central weld zone (CWZ)). Electron back-scattered diffraction examinations revealed the martensitic evolution in TMAZ and CWZ, suggesting that the experienced high temperature, severe plastic deformation, and fast cooling rate induce the microstructure transition during the CDFW process. The hard and brittle martensite structure explains the raised microhardness profiles and the reduced impact absorption energy of the as-welded joints. The CDFW process parameters govern the joint properties via influencing the welding heat input and plastic deformation by spindle speed and friction pressure at the friction stage, and the plastic deformation layer (flash) extrusion by upsetting pressure at the upsetting stage. More favorable results could be obtained at small set values of spindle speed (1800 rpm) and friction pressure (75 MPa) with less heat input and plastic deformation, and a large set value of upsetting pressure (175 MPa) with more flash extrusion, whose tensile strength reached 94.3% of that of the BM.
Due to the challenging communication and control systems, few underwater multi-robot coordination systems are currently developed. In nature, weakly electric fish can organize their collective activities using electrocommunication in turbid water. Inspired by this communication mechanism, we developed an artificial electrocommunication system for underwater robots in our previous work. In this study, we coordinate a group of underwater robots using this bio-inspired electrocommunication. We first design a time division multiple access (TDMA) network protocol for electrocommunication to avoid communication conflicts during multi-robot coordination. Then, we revise a distributed controller to coordinate a group of underwater robots. The distributed controller on each robot generates the required controls based on adjacent states obtained through electrocommunication. A central pattern generator (CPG) controller is designed to adjust the speed of individuals according to distributed control law. Simulations and experimental results show that a group of underwater robots is able to achieve coordination with the developed electrocommunication and control systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.