The present study describes the successful synthesis of a Ca2+‐doped LaCrO3 ceramic with high infrared (IR) emissivity, which is important for high‐temperature applications for significant energy saving. It is demonstrated that 20 mol% Ca2+‐doped LaCrO3, i.e., La0.8Ca0.2CrO3, exhibited an IR emissivity as high as 0.95 in the spectral region of 3–5 μm, which was 33.8% higher than that of LaCrO3. By using La0.8Ca0.2CrO3 as IR radiation agent in surface coating of heating unit, the radiative heat transfer could be enhanced significantly. The mechanism of the high IR emissivity of La0.8Ca0.2CrO3 was attributed to the following aspects: Ca2+ doping introduced an impurity energy level of Cr4+ into LaCrO3 and increased the hole carrier concentration, enhancing both impurity absorption and hole carrier absorption in the IR region; moreover, the doping caused lattice distortion enhanced the lattice vibration absorption. This novel high IR emissivity ceramic shows a promising future in high‐temperature applications for the purpose of energy‐saving.
We report the first U–Pb geochronological investigation of schorlomite garnet from carbonatite and alkaline complexes and demonstrate its applicability for U–Pb age determination using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) due to its relatively high U and Th abundances and negligible common Pb content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.