Abstract. This study aimed to observe the expression of dynamin-related protein-1 (Drp-1) in the renal interstitium in a rat model of renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO). In addition, the renoprotective effect of erythropoietin in this model was investigated. A total of 81 rats were randomly assigned to sham surgery, UUO model and treatment groups. Following surgery, the rats in the treatment group were subcutaneously administered erythropoietin at a dose of 3,000 IU/kg once a week until the time of sacrifice. Rats in the sham surgery and UUO model groups were administered an identical volume of normal saline. In each group, nine rats were chosen randomly for sacrifice on days 7, 14 and 21 after surgery for histological examination of renal tissue. Renal tissue specimens were examined by hematoxylin and eosin and Masson's trichrome staining. Immunohistochemical analysis was performed to determine the expression of Drp-1 in the renal interstitium. Renal function damage, as evaluated by the measurement of serum creatinine (Cr) and blood urea nitrogen (BUN) levels, was less severe in the treatment group compared with that in the model group at day 21 (P<0.01). Compared with the UUO model group, the renal interstitial injury score and fibrotic area of the treatment group were decreased markedly at the three time points (P<0.05). The expression level of Drp-1 in the treatment group was decreased markedly at the three time points compared with that in the model group (P<0.05). In conclusion, the expression of Drp-1 is increased in rat renal interstitial fibrosis, and erythropoietin may alleviate the degree of renal interstitial fibrosis by downregulating the expression of Drp-1.
The aim of this study was to investigate the effects of stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) on bone marrow-derived stem cell (BMSC) mobilization in rat models of renal ischemia/reperfusion (I/R) injury. In addition, the effects of SCF and G-CSF on cellular apoptosis were explored in order to determine the protective mechanism of the two factors against renal I/R injury. A unilateral renal I/R injury model was established for the model and treatment groups. The treatment and treatment control groups were subcutaneously injected with SCF (200 µg/kg/day) and G-CSF (50 µg/kg/day) 24 h after the establishment of the model for five consecutive days. The total number of leukocytes in the peripheral blood and the cellular percentages of cluster of differentiation (CD)34, renal CD34 and apoptotic cells were detected. The total number of leukocytes in the peripheral blood and the percentages of CD34 cells in the treatment and treatment control groups reached maximum levels on the fifth postoperative day and were significantly higher than those in the normal control and model groups. The number of renal CD34 cells in the treatment group was significantly increased compared with that in the treatment control and model groups. The apoptotic indices (AIs) of the model and treatment groups were higher than those of the normal control and treatment control groups. The AI of the model group was significantly higher than that of the treatment group. In conclusion, the combined application of SCF and G-CSF can mobilize sufficient numbers of BMSCs and cause cellular 'homing' to the injured site, thus inhibiting apoptosis and promoting the repair of renal tubular injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.