Paleogenomic and archaeological studies show that Neolithic lifeways spread from the Fertile Crescent into Europe around 9000 BCE, reaching northwestern Europe by 4000 BCE. Starting around 4500 BCE, a new phenomenon of constructing megalithic monuments, particularly for funerary practices, emerged along the Atlantic façade. While it has been suggested that the emergence of megaliths was associated with the territories of farming communities, the origin and social structure of the groups that erected them has remained largely unknown. We generated genome sequence data from human remains, corresponding to 24 individuals from five megalithic burial sites, encompassing the widespread tradition of megalithic construction in northern and western Europe, and analyzed our results in relation to the existing European paleogenomic data. The various individuals buried in megaliths show genetic affinities with local farming groups within their different chronological contexts. Individuals buried in megaliths display (past) admixture with local hunter-gatherers, similar to that seen in other Neolithic individuals in Europe. In relation to the tomb populations, we find significantly more males than females buried in the megaliths of the British Isles. The genetic data show close kin relationships among the individuals buried within the megaliths, and for the Irish megaliths, we found a kin relation between individuals buried in different megaliths. We also see paternal continuity through time, including the same Y-chromosome haplotypes reoccurring. These observations suggest that the investigated funerary monuments were associated with patrilineal kindred groups. Our genomic investigation provides insight into the people associated with this long-standing megalith funerary tradition, including their social dynamics.
Europe’s prehistory oversaw dynamic and complex interactions of diverse societies, hitherto unexplored at detailed regional scales. Studying 271 human genomes dated ~4900 to 1600 BCE from the European heartland, Bohemia, we reveal unprecedented genetic changes and social processes. Major migrations preceded the arrival of “steppe” ancestry, and at ~2800 BCE, three genetically and culturally differentiated groups coexisted. Corded Ware appeared by 2900 BCE, were initially genetically diverse, did not derive all steppe ancestry from known Yamnaya, and assimilated females of diverse backgrounds. Both Corded Ware and Bell Beaker groups underwent dynamic changes, involving sharp reductions and complete replacements of Y-chromosomal diversity at ~2600 and ~2400 BCE, respectively, the latter accompanied by increased Neolithic-like ancestry. The Bronze Age saw new social organization emerge amid a ≥40% population turnover.
Forensic anthropology has developed classification techniques for sex estimation of unknown skeletal remains, for example population-specific discriminant function analyses. These methods were designed for populations that lived mostly in the late nineteenth and twentieth centuries. Their level of reliability or misclassification is important for practical use in today's forensic practice; it is, however, unknown. We addressed the question of what the likelihood of errors would be if population specificity of discriminant functions of the tibia were disregarded. Moreover, five classification functions in a Czech sample were proposed (accuracies 82.1-87.5 %, sex bias ranged from -1.3 to -5.4 %). We measured ten variables traditionally used for sex assessment of the tibia on a sample of 30 male and 26 female models from recent Czech population. To estimate the classification accuracy and error (misclassification) rates ignoring population specificity, we selected published classification functions of tibia for the Portuguese, south European, and the North American populations. These functions were applied on the dimensions of the Czech population. Comparing the classification success of the reference and the tested Czech sample showed that females from Czech population were significantly overestimated and mostly misclassified as males. Overall accuracy of sex assessment significantly decreased (53.6-69.7 %), sex bias -29.4-100 %, which is most probably caused by secular trend and the generally high variability of body size. Results indicate that the discriminant functions, developed for skeletal series representing geographically and chronologically diverse populations, are not applicable in current forensic investigations. Finally, implications and recommendations for future research are discussed.
Limb bone morphology is influenced by external factors, including changes in subsistence and socioeconomic shifts. The aim of this study was to identify and describe any trends in morphological variation in human tibial epiphyses within an early medieval population of central Europe using surface scanning and geometric morphometric methods. The results are discussed in terms of three potential sources of variation in shape variability: sexual dimorphism, age at death and social status. These parameters were tested on a Great Moravian population sample (35 men and 30 women) from a Mikulcice settlement (9th-10th century AD). Proximal (13 landmarks) and distal (8 landmarks) tibial epiphyses were evaluated independently. The most significant differences in morphology of both articular ends were found between the groups separated by sex. Proximal tibial variability in the studied sample was characterized by a strong relationship between tibial size and shape of sexual dimorphic traits. Significant shape differences were also identified between adultus (20 - 40 years) and maturus (40 - 60) age groups regarding the proximal epiphysis but neither of the epiphyses was affected by the presumed social status as derived from location within the context of the settlement.
In this paper we present a three-dimensional (3D) morphometrical assessment of human tibia sexual dimorphism based on whole bone digital representation. To detect shape–size and shape differences between sexes, we used geometric morphometric tools and colour-coded surface deviation maps. The surface-based methodology enabled analysis of sexually dimorphic features throughout the shaft and articular ends of the tibia. The overall study dataset consisted of 183 3D models of adult tibiae from three Czech population subsets, dating to the early medieval (9–10th century) (N = 65), early 20th century (N = 61) and 21st-century (N = 57). The time gap between the chronologically most distant and contemporary datasets was more than 1200 years. The results showed that, in all three datasets, sexual dimorphism was pronounced. There were some sex-dimorphic characteristics common to all three samples, such as tuberosity protrusion, anteriorly bowed shaft and relatively larger articular ends in males. Diachronic comparisons also revealed substantial shape variation related to the most dimorphic area. Male/female distinctions showed a consistent temporal trend regarding the location of dimorphic areas (shifting distally with time), while the maximal deviation between male and female digitized surfaces fluctuated and reached the lowest level in the 21st-century sample. Sex determination on a whole-surface basis yielded the lowest return of correct sex assignment in the 20th-century group, which represented the lowest socioeconomic status. The temporal variation could be attributed to changes in living conditions, the decreasing lower limb loading/labour division in the last 12 centuries having the greatest effect. Overall, the results showed that a surface-based approach is successful for analysing complex long bone geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.