The paper is devoted to the study of facial region temperature changes using a simple thermal imaging camera and to the comparison of their time evolution with the pectoral area motion recorded by the MS Kinect depth sensor. The goal of this research is to propose the use of video records as alternative diagnostics of breathing disorders allowing their analysis in the home environment as well. The methods proposed include (i) specific image processing algorithms for detecting facial parts with periodic temperature changes; (ii) computational intelligence tools for analysing the associated videosequences; and (iii) digital filters and spectral estimation tools for processing the depth matrices. Machine learning applied to thermal imaging camera calibration allowed the recognition of its digital information with an accuracy close to 100% for the classification of individual temperature values. The proposed detection of breathing features was used for monitoring of physical activities by the home exercise bike. The results include a decrease of breathing temperature and its frequency after a load, with mean values −0.16 °C/min and −0.72 bpm respectively, for the given set of experiments. The proposed methods verify that thermal and depth cameras can be used as additional tools for multimodal detection of breathing patterns.
Multimodal signal analysis based on sophisticated noninvasive sensors, efficient communication systems, and machine learning, have a rapidly increasing range of different applications. The present paper is devoted to pattern recognition and the analysis of physiological data acquired by heart rate and thermal camera sensors during rehabilitation. A total number of 56 experimental data sets, each 40 min long, of the heart rate and breathing temperature recorded on an exercise bike have been processed to determine the fitness level and possible medical disorders. The proposed general methodology combines machine learning methods for the detection of the changing temperature ranges of the thermal camera and adaptive image processing methods to evaluate the frequency of breathing. To determine the individual temperature values, a neural network model with the sigmoidal and the probabilistic transfer function in the first and the second layers are applied. Appropriate statistical methods are then used to find the correspondence between the exercise activity and selected physiological functions. The evaluated mean delay of 21 s of the heart rate drop related to the change of the activity level corresponds to results obtained in real cycling conditions. Further results include the average value of the change of the breathing temperature (167 s) and breathing frequency (49 s).
Analysis of motion symmetry constitutes an important area with many applications in engineering, robotics, neurology and biomedicine. This paper presents the use of microelectromechanical sensors (MEMS), including accelerometers and gyrometers, to acquire data via mobile devices so as to monitor physical activities and their irregularities. Special attention is devoted to the analysis of the symmetry of the motion of the body when the same exercises are performed by the right and the left limb. The analyzed data include the motion of the legs on a home exercise bike under different levels of load. The method is based on signal analysis using the discrete wavelet transform and the evaluation of signal segment features such as the relative energy at selected decomposition levels. The subsequent classification of the evaluated features is performed by k-nearest neighbours, a Bayesian approach, a support vector machine, and neural networks. The highest average classification accuracy attained is 91.0% and the lowest mean cross-validation error is 0.091, resulting from the use of a neural network. This paper presents the advantages of the use of simple sensors, their combination and intelligent data processing for the numerical evaluation of motion features in the rehabilitation and monitoring of physical activities.
Motion pattern analysis uses methods for the recognition of physical activities recorded by wearable sensors, video-cameras, and global navigation satellite systems. This paper presents the motion analysis during cycling, using data from a heart rate monitor, accelerometric signals recorded by a navigation system, and the sensors of a mobile phone. The set of real cycling experiments was recorded in a hilly area with each route about 12 km long. The associated signals were analyzed with appropriate computational tools to find the relationships between geographical and physiological data including the heart rate recovery delay studied as an indicator of physical and nervous condition. The proposed algorithms utilized methods of signal analysis and extraction of body motion features, which were used to study the correspondence of heart rate, route profile, cycling speed, and cycling cadence, both in the time and frequency domains. Data processing included the use of Kohonen networks and supervised two-layer softmax computational models for the classification of motion patterns. The results obtained point to a mean time of 22.7 s for a 50 % decrease of the heart rate after a heavy load detected by a cadence sensor. Further results point to a close correspondence between the signals recorded by the body worn accelerometers and the speed evaluated from the GNSSs data. The accuracy of the classification of downhill and uphill cycling based upon accelerometric data achieved 93.9 % and 95.0 % for the training and testing sets, respectively. The proposed methodology suggests that wearable sensors and artificial intelligence methods form efficient tools for motion monitoring in the assessment of the physiological condition during different sports activities including cycling, running, or skiing. The use of wearable sensors and the proposed methodology finds a wide range of applications in rehabilitation and the diagnostics of neurological disorders as well.INDEX TERMS Multimodal signal analysis, computational intelligence, machine learning, motion monitoring, accelerometer-derived cycling data, classification.
The monitoring of physical activities and recognition of motion disorders belong to important diagnostical tools in neurology and rehabilitation. The goal of the present paper is in the contribution to this topic by (i) analysis of accelerometric signals recorded by wearable sensors located at specific body positions and by (ii) implementation of deep learning methods to classify signal features. This paper uses the general methodology to analysis of accelerometric signals acquired during cycling at different routes followed by the global positioning system (GPS). The experimental dataset includes 850 observations that were recorded by a mobile device in the spine area (L3 verterbra) for cycling routes with the different slope. The proposed methodology includes the use of deep learning convolutional neural networks with five layers applied to signal values transformed into the frequency domain without A. Procházka ( )
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.