NKG2D and its ligands, MICA and MICB, are known as the key regulators of NK cells. NK cells are the first reconstituted cells after the allogeneic hematopoietic stem cell transplantation (HSCT); therefore, it is crucial to understand their role in HSCT outcome. In the presented study, we investigated the single amino acid changes across the exons 2–4 of MICA and MICB genes, and point mutations within the NKG2D gene, which defines the type of NKG2D haploblock (HNK/LNK) in the donors (n = 124), as well as in patients with acute myeloid leukemia (n = 78). In our cohort, we found that graft from a donor with at least one MICA allele containing glycine at position 14 (MICA-14Gly) is significantly associated with deterioration of a patient’s overall survival (OS) (p < 0.05). We also observed a negative effect of MICB-58 (Lys → Glu) polymorphism on relapse-free survival (RFS), although it was not statistically significant in multivariate analysis (p = 0.069). To our knowledge, this is the first work describing the role of MICA-14 and MICB-58 polymorphisms on HSCT outcome.
Relapsed acute myeloid leukemia (AML) is a significant post-transplant complication lacking standard treatment and associated with a poor prognosis. Cellular therapy, which is already widely used as a treatment for several hematological malignancies, could be a potential treatment alternative. Natural killer (NK) cells play an important role in relapse control but can be inhibited by the leukemia cells highly positive for HLA class I. In order to restore NK cell activity after their ex vivo activation, NK cells can be combined with conditioning target cells. In this study, we tested NK cell activity against KG1a (AML cell line) with and without two types of pretreatment—Ara-C treatment that induced NKG2D ligands (increased activating signal) and/or blocking of HLA–KIR (killer-immunoglobulin-like receptors) interaction (decreased inhibitory signal). Both treatments improved NK cell killing activity. Compared with target cell killing of NK cells alone (38%), co-culture with Ara-C treated KG1a target cells increased the killing to 80%. Anti-HLA blocking antibody treatment increased the proportion of dead KG1a cells to 53%. Interestingly, the use of the combination treatment improved the killing potential to led to the death of 85% of KG1a cells. The combination of Ara-C and ex vivo activation of NK cells has the potential to be a feasible approach to treat relapsed AML after hematopoietic stem cell transplantation.
Killer-immunoglobulin-like receptors (KIRs) are critical natural killer (NK) cell regulators. The expression of KIRs is a dynamic process influenced by many factors. Their ligands—HLA(Human Leukocyte Antigen) class I molecules—are expressed on all nucleated cells that keep NK cells under control. In hematopoietic stem cell transplantation (HSCT), NK cells play an essential role in relapse protection. In the presented pilot study, we characterized the dynamic expression of inhibitory KIRS (iKIRs), which protect cells against untoward lysis, in donors and patients during the first three months after HSCT using flow cytometry. The expression of all iKIRs was highly variable and sometimes correlated with patients’ clinical presentation and therapy regiment. Cyclophosphamide (Cy) in the graft-versus-host disease (GvHD) prevention protocol downregulated KIR2DL1 to just 25% of the original donor value, and the FEAM (Fludarabine + Etoposid + Ara-C + Melphalan) conditioning protocol reduced KIR2DL3. In lymphoid neoplasms, there was a slightly increased KIR2DL3 expression compared to myeloid malignancies. Additionally, we showed that the ex vivo activation of NK cells did not alter the level of iKIRs. Our study shows the influence of pre- and post-transplantation protocols on iKIR expression on the surface of NK cells and the importance of monitoring their cell surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.