Communities of root-associated fungi (RAF) commonly have been studied under the auspices of arbuscular mycorrhizal fungi (AMF) or ectomycorrhizal fungi. However many studies now indicate that other groups of endophytic RAF, including dark septate endophytes (DSE) are more abundant in some plants and environments. The common forage grass, Bouteloua gracilis, was used as a model to examine whether RAF also colonize different organs within the same plant and to compare RAF communities from sites across North America, spanning the latitudinal range of B. gracilis (from Canada to Mexico). We compared the RAF communities of organs within individual plants at one site and within plant roots among six sites. With the possible exception of one group related to genus Paraphaeosphaeria there was little evidence that RAF colonized vertically beyond the crowns. Furthermore, although there was some variation in the constitution of rare members of the RAF communities, several taxonomically related groups dominated the RAF community at all sites. These dominant taxa included members in the Pleosporales (related to the DSE, Paraphaeosphaeria spp.), Agaricales (related to Moniliophthora spp., or Campanella spp.) and Hypocreales (related to Fusarium spp.). AMF were notable by their near absence. Similar phylotypes from the dominant groups clustered around adjacent sites so that similarity of the RAF communities was negatively correlated to site inter-distance and the RAF communities appeared to group by country. These results increase the possibility that at least some of these common and widely distributed core members of the RAF community form important, intimate and long lasting relationships with grasses.
This paper reports the use of molecular methods to characterize the coprophilous fungal communities (CFC) that inhabit the dung of four species of mammalian herbivores at two sites, Sevilleta National Wildlife Refuge (SNWR) in New Mexico and Wind Cave National Park (WCNP) in South Dakota. Results reveal that CFC from domesticated cattle (Bos taurus) at SNWR, and bison (Bison bison) and black-tailed prairie dogs (Cynomys ludovicianus) at WCNP were diverse but dominated primarily by members within eight taxonomic orders, including the rarely cultured and anaerobic order Neocallimastigales. In addition, 7.7% (138 of 1,788) of the sequences obtained from all dung samples were at least 97% similar to root-associated fungal (RAF) sequences previously described from blue grama (Bouteloua gracilis), a common forage grass found throughout North America and growing at both study sites. In contrast, 95.8% (295 of 308) of the sequences and four of the total seven operational taxonomic units obtained from pronghorn antelope (Antilocapra americana) dung belonged to the Pleosporalean order. We hypothesize that some herbivore vectors disperse non-systemic (non-clavicipitaceous) fungal endophytes. These dispersal events, it is argued, are most likely to occur via herbivores that occasionally forage and masticate root tissue, especially in arid regions where aboveground vegetation is sparse. The results of this study suggest that some (possibly many) members of the RAF community can expand their ecological role to include colonizing dung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.