HSP90 is a protein chaperone particularly important in the maturation of a diverse set of proteins that regulate key steps in a multitude of biological processes. Alterations in HSP90 function produce altered phenotypes at low penetrance in natural populations. Previous work has shown that at least some of these phenotypes are due to genetic variation that remains phenotypically cryptic until it is revealed by the impairment of HSP90 function. Exposure of such ''buffered'' genetic polymorphisms can also be accomplished by environmental stress, linking the appearance of new phenotypes to defects in protein homeostasis. Should such polymorphisms be widespread, natural selection may be more effective at producing phenotypic change in suboptimal environments. In evaluating this hypothesis, a key unknown factor is the frequency with which HSP90-buffered polymorphisms occur in natural populations. Here, we present Arabidopsis thaliana populations suitable for genetic mapping that have constitutively reduced HSP90 levels. We employ quantitative genetic techniques to examine the HSP90-dependent polymorphisms affecting a host of plastic plant life-history traits. Our results demonstrate that HSP90-dependent natural variation is present at high frequencies in A. thaliana, with an expectation that at least one HSP90-dependent polymorphism will affect nearly every quantitative trait in progeny of two different wild lines. Hence, HSP90 is likely to occupy a central position in the translation of genotypic variation into phenotypic differences.cryptic variation ͉ molecular chaperone ͉ morphological evolution
SummaryNatural variation and induced mutations are important resources for gene discovery and the elucidation of genetic circuits. Mapping such polymorphisms requires rapid and cost-efficient methods for genome-wide genotyping. Here we report the development of a microarray-based method that assesses 240 unique markers in a single hybridization experiment at a cost of less than US$50 in materials per line. Our genotyping array is built with 70-mer oligonucleotide elements representing insertion/deletion (indel) polymorphisms between the Arabidopsis thaliana accessions Columbia-0 (Col) and Landsberg erecta (Ler). These indel polymorphisms are recognized with great precision by comparative genomic hybridization, eliminating the need for array replicates and complex statistical analysis. Markers are present genome-wide, with an average spacing of approximately 500 kb. PCR primer information is provided for all array indels, allowing rapid single-locus inquiries. Multi-well chips allow groups of 16 lines to be genotyped in a single experiment. We demonstrate the utility of the array for accurately mapping recessive mutations, RIL populations and mixed genetic backgrounds from accessions other than Col and Ler. Given the ease of use of shotgun sequencing to generate partial genomic sequences of unsequenced species, this approach is readily transferable to non-model organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.