In multicellular organisms, organogenesis requires a tight control of the balance between cell division and cell differentiation. Distinct signalling pathways that connect both cellular processes with developmental cues might have evolved to suit different developmental plans. Here, we identified and characterized a novel protein that interacts with pre-replication complex (pre-RC) subunits, designated Armadillo BTB Arabidopsis protein 1 (ABAP1). Overexpression of ABAP1 in plants limited mitotic DNA replication and decreased cell proliferation in leaves, whereas ABAP1 downregulation increased cell division rates. Activity of ABAP1 in transcription was supported by its association with the transcription factor AtTCP24. The ABAP1-AtTCP24 complex bound specifically to the promoters of AtCDT1a and AtCDT1b in vitro and in vivo. Moreover, expression levels of AtCDT1a and AtCDT1b were reduced in ABAP1-overexpressing plants and they were increased in plants with reduced levels of ABAP1. We propose that ABAP1 participates in a negative feedback loop regulating mitotic DNA replication during leaf development, either by repressing transcription of pre-RC genes and possibly by regulating pre-RC utilization through direct association with pre-RC components.
Eukaryotic DNA replication requires an ordered and regulated machinery to control G1/S transition. The formation of the pre-replicative complex (pre-RC) is a key step involved in licensing DNA for replication. Here, we identify all putative components of the full pre-RC in the genome of the model plant Arabidopsis thaliana. Different from the other eukaryotes, Arabidopsis houses in its genome two putative homologs of ORC1, CDC6 and CDT1. Two mRNA variants of AtORC4 subunit, with different temporal expression patterns, were also identified. Two-hybrid binary interaction assays suggest a primary architectural organization of the Arabidopsis ORC, in which AtORC3 plays a central role in maintaining the complex associations. Expression profiles differ among pre-RC components suggesting the existence of various forms of the complex, possibly playing different roles during development. In addition, the expression of the putative pre-RC genes in non-proliferating plant tissues suggests that they might have roles in processes other than DNA replication licensing.
Several Brazilian sugarcane varieties have the ability to grow with little addition of inorganic nitrogen fertilizers, showing high contributions of Biological Nitrogen Fixation (BNF). A particular type of nitrogen-fixing association has been described in this crop, where endophytic diazotrophs such as Gluconacetobacter diazotrophicus and Herbaspirillum spp. colonize plant tissues without causing disease symptoms. In order to gain insight into the role played by the sugarcane in the interaction between this plant and endophytic diazotrophs, we investigated gene expression profiles of sugarcane plants colonized by G. diazotrophicus and H. rubrisubalbicans by searching the sugarcane expressed sequence tag SUCEST Database (http://sucest.lad.ic.unicamp.br/en/). We produced an inventory of sugarcane genes, candidates for exclusive or preferential expression during the nitrogen-fixing association. This data suggests that the host plant might be actively involved in the establishment of the interaction with G. diazotrophicus and H. rubrisubalbicans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.