The results indicate that NHEKs are more susceptible to the application of AgNPs than NHDFs, and AgNPs may be useful for medical applications for the treatment of wounds.
Wound dressings with silver have been shown to be cytotoxic in vitro. However, the extrapolation of this cytotoxicity to clinical settings is unclear. We applied dressings with various forms of silver on porcine skin ex vivo and investigated silver penetration and DNA damage. We assessed antimicrobial efficacy, cytotoxicity to skin cells, and immune response induced by the dressings. All dressings elevated the DNA damage marker γ-H2AX and the expression of stress-related genes in explanted skin relative to control. This corresponded with the amount of silver in the skin. The dressings reduced viability, induced oxidative stress and DNA damage in skin cells, and induced the production of pro-inflammatory IL-6 by monocytes. The oxidative burst and viability of activated neutrophils decreased. The amount of silver released into the culture medium varied among the dressings and correlated with in vitro toxicity. However, antimicrobial efficiencies did not correlate strongly with the amount of silver released from the dressings. Antimicrobial efficiency and toxicity are driven by the form of silver and the construction of dressings and not only by the silver concentration. The damaging effects of silver dressings in ex vivo skin highlight the importance of thorough in vivo investigation of silver dressing toxicity.
This work reports the synthesis and characterisation of new amphiphilic hyaluronan (HA) grafted with poly(3-hydroxyalkanoates) (PHAs) conjugates. Hydrolytic depolymerisation of PHAs was used for the synthesis of defined oligo(3-hydroxyalkanoates)-containing carboxylic terminal moieties. A kinetic study of the depolymerisation was followed to prepare oligomers of required molecular weight. PHAs were coupled with hydroxyl groups of HA mediated by N, N'-carbonyldiimidazole (CDI) or HSTU Tetramethyl-O-(N-succinimidyl) uronium hexafluorophosphate. For the first time, the covalent bonding of oligo derivatives of P(3-hydroxybutyrate), P(3-hydroxyoctanoate), P(3-hydroxyoctanoate-co-3-hydroxydecanoate) and P(3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate) and HA was achieved by "grafting to" strategy. Achieved grafting degree was a function of hydrophobicity of PHA, Mw and polarity of the solvent. The most suitable reaction conditions were observed for oligo (3-hydroxybutyrate) grafted to HA (grafting degree of 14%). Graft copolymers were characterized by FT-IR, NMR, DSC and SEC-MALLS. Graft copolymers can be physically loaded with hydrophobic drugs and may serve as drug delivery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.