Background: The expected deficit of the Egyptian share of the River Nile budget with the construction of the Renaissance Dam in Ethiopia necessitates a proper utilization of the water resources in the Nile Valley. The present study aims at characterizing the chemical and bacteriological compositions of the groundwater in the Quaternary and Eocene fractured limestone aquifers in Assuit Governorate as a suggested scheme for the groundwater quality evaluation in the Egyptian River Nile basin. Results: We analyzed 92 samples collected from shallow boreholes within 15 km on both sides of the River Nile for major, minor, and trace ions and compared the results to the national and international standards for drinking water. Some chemical data were collected from Assiut Drinking Water Station while some other samples were analyzed chemically and bacteriological in the Laboratories of Science and agriculture faculties and the laboratories of Assiut Drinking & sanitation Company. The groundwater composition is seasonally variable depending on the variation in the local surface water (level composition). The results of bacteriological examination show that the highest most probable number of total coliform was found 5.9 MPN/100 ml and the minimum value of MPN of total coliform was found 1.1 MPN/100 ml. Groundwater potentiality and evaluation for drinking and domestic uses depend on several parameters which must be taken into consideration. Conclusions: The current research concluded that the GIS-based water potentiality spatial model (WPSM) indicated that the northwest part and southeast part represented the highest and lowest potentiality respectively for drinking water purposes. The suggested scheme in this study could be a valid tool to evaluate the water quality in the River Nile basin and similar settings worldwide.
Background: Kima company is located east of the river Nile, 2.5 km south of Aswan City. The Quaternary sands and gravels represent the main groundwater aquifer in the area. It is mainly recharged from the river Nile seepage between the high and the old Aswan Dams. Some water seepage comes from the fish hatchery canal close to the area. The objective is to study the temporal-spatial development of the drainage ponds resulting from the rise of the groundwater level in line with the agricultural and urban development in and around the Kima plant area using chemical analysis and advanced technology (remote sensing and GIS techniques). Results: Many wells were drilled and used to pump the groundwater in and south of the area, from which 15 wells that were used to feed Aswan city by drinking water were stopped since 2009. As result, the groundwater level rises and most of the wells of Kima company flooded. The groundwater quality deteriorated and some environmental changes in the surrounding area were detected. Monitoring and analysis of these changes are studied using remote sensing and GIS techniques. The results show an increase in both the surface water bodies (ponds) and urban areas. Conclusions: Since 2009, 15 productive drinking water wells were ceased in the study area. It is the main reason which caused more rising of the groundwater level accompanied by increasing of its salinity. The study detected and calculated the area influenced by the groundwater seepage, urbanization, and the agricultural reclamation areas. The successive changes in these parameters throughout the period 2007-2017 are calculated. Rising groundwater levels are expected to be a chronic problem and will likely be a major issue for residential areas of Aswan city.
Background The limited water resources in arid environments in addition to the effect of agricultural and anthropogenic activities on groundwater quantity and quality necessitate paying more attention to the quality assessment of these resources. The present studies assess the quality of groundwater resources in Wadi El-Assiuti, south Egypt, and evaluate their suitability for drinking and irrigation purposes. To achieve this goal, 159 groundwater samples were collected from the outlet and central parts of the Wadi El-Assiuti during the autumn season (October–November) of 2019 and were analyzed for major ions, trace elements and heavy metals. Results The results indicate that the TDS values range between 1972 and 6217 ppm, while the concentration of trace elements (Fe++, Mn++ and Ni+) ranges between 0.05 and 0.46, 0.11 and 0.221 and 0.01 and 0.6 ppm, respectively. These results show that all groundwater samples are clearly unacceptable and inappropriate for human drinking due to their high content of total dissolved solids, trace elements and heavy metals, particularly in the majority of samples according to World Health Organization (WHO) guidelines and the Egyptian standards (Eg. St. 2007) for drinking water quality. Spatial analysis of the TDS values in geographic information system environment indicates that the salinity is higher in the northeast and gradually decreases southward. Sodium adsorption ratio, US Salinity Laboratory classification (1954), residual sodium carbonate, soluble sodium percentage and permeability index show that most groundwater samples are suitable for irrigation purposes. Conclusions The integrated approach provided in this study highlights the spatially distributed suitability of groundwater resources in Wadi El-Assiuti and can be applied in similar basins worldwide.
Archaeological sites in Upper Egypt, especially Edfu Temple, are considered a wealth of human civilization and are irreplaceable. Deterioration of archaeological sites due to environmental changes in Edfu city include disintegration and exfoliation of stones, dissolution of building materials, loss of moral paintings, crystallization of salts in walls and columns, stone bleeding, destruction of wall paintings and texts, decreasing of durability of monumental stones, and discolouring. Recently, the archaeological field has received a lot of interest from Remote Sensing (RS) and Geographic Information Systems (GIS) users to observe the impact of environmental changes on archaeological sites during long periods. CORONA, LANDSAT, and SENTINEL-2A satellite images are our tools in detecting the changes around the study area and creating innovative solutions. Results from the analysis conducted suggest that most of the environmental changes in the study area are caused by uncontrolled urban sprawling and rising groundwater levels due to agricultural and urban expansion. The proximity of agricultural lands to archaeological areas has also affected the rise in groundwater levels. This has also played an important role in the transfer of chemical contaminants with the leaking water of soil to these archaeological sites, resulting in the growth of salt crystals. In this research, the environmental hazards and their effects are being observed for the archaeological sites of Edfu city (Upper Egypt). A comprehensive analysis has been conducted for the Horus Temple considering its building material, soil characteristics and environmental setting. Finally, we have created some models to protect the archaeological sites from environmental changes by the integration of remote sensing and GIS techniques.
Background This paper discusses the hydrological problems assessment of flash floods and the encroachment of wastewater in selected urban areas of Greater Cairo using remote sensing and geographic information system (GIS) techniques. The integration of hydrogeological and geomorphological analyses with the fieldwork of drainage basins (Wadi Degla) hosting these urban areas endeavors to provide the optimum mitigation measures that can be feasibly taken to achieve sustainability of the urban areas and water resources available. Results Landsat 5 and Sentinel-2 satellite images were obtained shortly before and after flash flood events and were downloaded and analyzed to define the active channels, urban interference, storage areas, and the natural depressions response. The quantitative flash flood estimates include total GSMap meteorological data sets, parameters of rainfall depths from remote sensing data, active channel area from satellite images, and storage areas that flooded. In GIS, digital elevation model was used to estimate the hydrographic parameters: flow direction within the catchment, flow accumulation, time zone of the catchment, and estimating of the water volume in the largely inundated depressions. Conclusions Based on the results obtained from the study of available satellite images, it has been shown that there are two significant hydrological problems, including the lack of flash flood mitigation measures for urban areas, as the wastewater depressions and sanitary facilities are dotting in the downstream areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.