The rapid growth and adaptation of medical information to identify significant health trends and help with timely preventive care have been recent hallmarks of the modern healthcare data system. Heart disease is the deadliest condition in the developed world. Cardiovascular disease and its complications, including dementia, can be averted with early detection. Further research in this area is needed to prevent strokes and heart attacks. An optimal machine learning model can help achieve this goal with a wealth of healthcare data on heart disease. Heart disease can be predicted and diagnosed using machine-learning-based systems. Active learning (AL) methods improve classification quality by incorporating user–expert feedback with sparsely labelled data. In this paper, five (MMC, Random, Adaptive, QUIRE, and AUDI) selection strategies for multi-label active learning were applied and used for reducing labelling costs by iteratively selecting the most relevant data to query their labels. The selection methods with a label ranking classifier have hyperparameters optimized by a grid search to implement predictive modelling in each scenario for the heart disease dataset. Experimental evaluation includes accuracy and F-score with/without hyperparameter optimization. Results show that the generalization of the learning model beyond the existing data for the optimized label ranking model uses the selection method versus others due to accuracy. However, the selection method was highlighted in regards to the F-score using optimized settings.
Coronavirus (COVID-19) is one of the most serious problems that has caused stopping the wheel of life all over the world. It is widely spread to the extent that hospital places are not available for all patients. Therefore, most hospitals accept patients whose recovery rate is high. Machine learning techniques and artificial intelligence have been deployed for computing infection risks, performing survival analysis and classification. Survival analysis (time-to-event analysis) is widely used in many areas such as engineering and medicine. This paper presents two systems, Cox_COVID_19 and Deep_ Cox_COVID_19 that are based on Cox regression to study the survival analysis for COVID-19 and help hospitals to choose patients with better chances of survival and predict the most important symptoms (features) affecting survival probability. Cox_COVID_19 is based on Cox regression and Deep_Cox_COVID_19 is a combination of autoencoder deep neural network and Cox regression to enhance prediction accuracy. A clinical dataset for COVID-19 patients is used. This dataset consists of 1085 patients. The results show that applying an autoencoder on the data to reconstruct features, before applying Cox regression algorithm, would improve the results by increasing concordance, accuracy and precision. For Deep_ Cox_COVID_19 system, it has a concordance of 0.983 for training and 0.999 for testing, but for Cox_COVID_19 system, it has a concordance of 0.923 for training and 0.896 for testing. The most important features affecting mortality are, age, muscle pain, pneumonia and throat pain. Both Cox_COVID_19 and Deep_ Cox_COVID_19 prediction systems can predict the survival probability and present significant symptoms (features) that differentiate severe cases and death cases. But the accuracy of Deep_Cox_Covid_19 outperforms that of Cox_Covid_19. Both systems can provide definite information for doctors about detection and intervention to be taken, which can reduce mortality.
There has been growing on big data since last decade for discovering useful trends or patterns that are used in diagnosis and decision making. Intelligent decision support system an automated judgment that supports decision making is composed of human and computer interaction to help in decision making accuracy. Also multi-agent systems (MAS) are collections of independent intelligent entities that collaborate in the joint resolution of a complex problem. Multi-agent intelligent decision support systems can be used to solve large-scale convention problem. This paper is a survey of the recent research in multiagent and intelligent decision support systems to support for classification problems. The purpose of the survey described in this paper is the development of a novel large-scale hybrid medical diagnosis system based on Multi-agent Intelligent Decision Support System (IDSS) for distributed database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.