Complete thoracic (T) spinal cord injury (SCI) above the T6 level typically results in autonomic dysreflexia, an abnormal hypertensive condition commonly triggered by nociceptive stimuli below the level of SCI. Over-expression of nerve growth factor in the lumbosacral spinal cord induces profuse sprouting of nociceptive pelvic visceral afferent fibers that correlates with increased hypertension in response to noxious colorectal distension. After complete T4 SCI, we evaluated the plasticity of propriospinal neurons conveying visceral input rostrally to thoracic sympathetic preganglionic neurons. The anterograde tracer biotinylated dextran amine (BDA) was injected into the lumbosacral dorsal gray commissure (DGC) of injured/non-transected rats immediately after injury (acute) or 2 weeks later (delayed). At 1 or 2 weeks after delayed or acute injections, respectively, a higher density (p<0.05) of BDA + fibers was found in thoracic dorsal gray matter of injured versus non-transected spinal cords. For corroboration, fast blue (FB) or cholera toxin subunit beta (CTb) was injected into the T9 dorsal horns 2 weeks post-injury/non-transection. After 1 week transport, more retrogradely-labeled (p<0.05) DGC propriospinal neurons (T13-S1) were quantified in injured versus non-transected cords. We also monitored immediate early gene, c-fos, expression following colorectal distension and found increased (p<0.01) c-Fos + cell numbers throughout the DGC after injury. Collectively, these results imply that, in conjunction with local primary afferent fiber plasticity, injury-induced sprouting of DGC neurons may be a key constituent in relaying visceral sensory input to sympathetic preganglionic neurons that elicit autonomic dysreflexia after high thoracic SCI.
Our data indicate a role for A2 neurons in the chronic regulation of arterial pressure independent of the cardiac baroreceptor reflex. The activity of A2 neurons may constitute an essential part of the central circuitry underpinning chronic regulation of arterial pressure in both, normo- and hypertensive rats.
Autonomic dysreflexia is a potentially life-threatening hypertensive syndrome following high thoracic (T) spinal cord injury (SCI). It is commonly triggered by noxious pelvic stimuli below the injury site that correlates with increased sprouting of primary afferent C-fibers into the lumbosacral spinal cord. We have recently demonstrated that injury-induced plasticity of lumbosacral propriospinal neurons, which relay pelvic visceral sensations to thoracolumbar sympathetic preganglionic neurons, is also correlated with the development of this syndrome. To determine the phenotype of pelvic afferent fiber sprouts after SCI, cholera toxin subunit beta (CTb) was injected into the distal colon 2 weeks post T4 transection/sham to label colonic visceral afferents. After 1 week transport, the lumbosacral spinal cords were cryosectioned and immunohistochemically stained for CTb, the nociceptive-specific marker calcitonin gene-related peptide (CGRP), and the myelinated fiber marker RT97. Quantitative analysis showed that the density of CGRP+ afferent fibers was significantly increased in the L6/S1 dorsal horns of T4-transected versus sham rats, whereas RT97+ afferent fiber density showed no change. Importantly, CTb-labeled pelvic afferent fibers were co-localized with CGRP+ fibers, but not with RT97+ fibers. These results suggest that the sprouting of unmyelinated nociceptive pelvic afferents following high thoracic SCI, but not myelinated fibers, contributes to hypertensive autonomic dysreflexia induced by pelvic visceral pain.
Adenoviral vectors (AVVs) and lentiviral vectors (LVVs) are highly useful research tools which can be used to investigate the function of specific cell phenotypes in the brain. The transductional tropism of viral vectors has a critical impact upon the transgene expression in different brain areas. This largely depends on the properties of the viral particles, which for AVVs are most commonly analogous to the serotype 5 adenovirus and, in the case of LVVs, are determined by the envelope used for pseudotyping, for example the vesicular stomatitis virus coat (VSVG). We have created a matching set of shuttle plasmids that allow a one-step transfer of an entire expression cassette between the backbones of AVVs and LVVs. This has permitted a fair assessment of the impact of the vector type on tropism for both AVVs and LVVs. Thus, the aims of this study were twofold: (i) to develop and demonstrate the validity of a transgene 'swap' system between AVVs and LVVs; and (ii) using this system, to assess the tropism of AVVs and LVVs for neuronal versus glial cell types. We have constructed AVVs and VSVG-coated LVVs to express monomeric red fluorescent protein (mRFP) driven by the human cytomegalovirus promoter (hCMV). Transgene expression in neurones and glia in the hypoglossal and dorsal vagal motor nuclei of the rat brainstem was compared by determining the colocalization with immunostaining for the neuronal marker NeuN (neuronal nuclear antigen) and the glial marker GFAP (glial fibrillatory acidic protein). We found that 55% of mRFP-expressing cells transduced with AVVs were immunopositive for GFAP, while only 38% were NeuN-immunoreactive. In contrast, when the same expression cassette was delivered by VSVG-coated LVVs, the neurone/glia ratio of mRFP expression was reversed with 56% of mRFP-positive cells identified as neurones and 26% as glia. Thus, the present study provides compelling evidence that VSVG-coated LVVs significantly shift transgene expression towards neurones while transduction with AVVs favours glia.
We employ viral vectors to address questions related to the function of specific types of neurones in the central control of blood pressure. Adenoviral vectors (AVVs) or lentiviral vectors (LVVs) can be used to visualize specifically living GABAergic or noradrenergic (NAergic) neurones or to interfere with intracellular signalling within these cell types. Here, we review recent in vitro, in situ and in vivo applications of these vectors in the rat brainstem as performed in our laboratories. In organotypic slice cultures prepared from defined cardiovascular brainstem areas, viral vectors were used to study the electrophysiological properties, intracellular signalling and gene expression in selected neuronal phenotypes. In vivo, vectors were microinjected into brainstem nuclei to inhibit specific aspects of cell signalling by expression of dominant negative proteins, for example. Outcomes for cardiovascular control were measured either acutely in situ or chronically in vivo with radio telemetry in freely moving rats. We showed that AVVs and LVVs have distinct properties that need to be considered prior to their application. For example, LVVs can be manufactured very quickly, have no immunogenicity and can be pseudotyped to display higher tropism for neurones than glia. However, comparatively lower production yields of LVVs may limit their use for some types of applications. In contrast, AVVs require a lengthy construction period, are easy to amplify to high yields at moderate cost but may trigger an immune response when used at high titres in vivo. These features make AVVs particularly suitable for in vitro applications. As the two vector types complement each other in several ways we generated a shuttle system that simplifies transfer of transgene cassettes between the backbones of AVVs and LVVs. Thus, AVVs and LVVs are powerful experimental tools that can be used in a variety of experimental designs in vivo, in situ and in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.