Cistus genus (Cistaceae) comprises several medicinal plants used in traditional medicines to treat several pathological conditions including hyperglycemia. These include Cistus salviifolius L. (CS) and Cistus monspeliensis L. (CM), still not fully explored as a source of metabolites with therapeutic potential for human diseases. In this study, the antioxidant α-amylase and α-glucosidase enzyme inhibitory effects of aqueous and hydromethanolic extracts from the aerial parts of Moroccan CS and CM were investigated. Antioxidant activity has been assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and ferric reducing/antioxidant power (FRAP) methods. The α-amylase and α-glucosidase inhibitory activity has been assessed using an in vitro model. Moreover, mineral and phenolic contents of CS and CM were analyzed. The extracts of both species exhibited potent antioxidant activity in all used systems and possess strong inhibitory effect towards α-glucosidase (IC50: 0.95 ± 0.14 to 14.58 ± 1.26 μg/mL) and significant inhibitory potential against α-amylase (IC50: 217.10 ± 0.15 to 886.10 ± 0.10 μg/mL). Furthermore, the result showed high levels of phenolic content and unexpectedly some higher levels of mineral content in CS. The results suggest that the phenolic rich extracts of CS and CM may have a therapeutic potential against diseases associated with oxidative stress and may be useful in the management of hyperglycemia in diabetic patients.
Background
Diabetes mellitus (DM) is currently a major health problem and the most common chronic disease worldwide. Traditional medicinal plants remedies remain a potential adjunct therapy to maintain better glycemic control while also imparting few side-effects. Arbutus unedo L. has been traditionally used to manage several diseases including diabetes. This study was undertaken to contribute the validation of the traditional use of Arbutus unedoL. (Ericaceae) in the treatment of diabetes.
Methods
In-vitro antidiabetic effect of the A. unedo roots aqueous extract was conducted using α-glucosidase and α-amylase assays. While in-vivo antidiabetic activity was conducted using streptozotocin-nicotinamide (STZ-NA) induced diabetic mice. Diabetic animals were orally administered the aqueous extract in 500 mg/kg of body weight to assess the antidiabetic effect. The blood glucose level and body weight of the experimental animals were monitored for 4 weeks. In addition, the histopathological examination of the treated mice pancreas was also conducted to observe the changes of β-cells during the treatment process.
Results
The extract produced a significant decrease in blood glucose level in diabetic mice. This decrease was equivalent to that which observed in mice treated with a standard after 2–4 weeks. In addition, the plant extract exhibited a potent inhibitory effect on α-amylase and α-glucosidase activity with IC50 values of 730.15±0.25 μg/mL and 94.81±5.99 μg/mL, respectively. Moreover, the histopathologic examination of the pancreas showed a restoration of normal pancreatic islet cell architecture which observed in the diabetic mice treated with plant extract.
Conclusions
The aqueous A. unedo roots extract has a significant in vitro and in vivo antidiabetic effects and improves metabolic alterations. The revealed results justify its traditional medicinal use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.