Synthetic chemical preservatives are widely used in the food industry to delay the deterioration caused by microbial growth, enzyme activities and oxidation reactions. The last few decades have witnessed marked interest in finding natural food preservatives due to the potential health damage of synthetic preservatives; consumers have become skeptical of consuming foods containing these additives. Polyphenols used as natural preservatives that can be extracted from fruits, vegetables, herbs and spices provide the best alternative for partial or complete replacement of their synthetic analogues. The present study’s emphasis was on employing different plant extracts to be efficiently used as antimicrobial agents for developing replacements for the synthetic chemical additives in food products. The study also investigated the antimicrobial potentialities of five medicinal plants, widely used in Egypt (sumac, tamarind, rosemary, roselle and lemon) against six microbial markers (E. coli, P. aeruginosae, B. subtilis, S. aureus, Penicillium sp. and A. niger.). Sumac extracts showed the best activity against all tested microorganisms, producing the widest inhibition zones ranging from 14 to 45 mm, followed by tamarind and roselle extracts, with inhibition zones ranging from 8–36 and 8–34 mm, respectively. On the other hand, extracts of rosemary and lemon showed variable antimicrobial activity. All extracts from all tested plants were less active against fungal species than bacterial species. In all cases, the organic extracts (80% methanol, 80% ethanol) showed the same or greater activity than the aqueous extracts. In addition, the methanolic extracts showed the strongest and broadest spectrum. The most sensitive strain to plant extracts was B. subtilis, while the most resistant strain was P. aeruginosae. The MIC and MBC or MFC values of methanolic extracts were assayed using the broth dilution method. Sumac extract showed the best activity against all tested microorganisms with the lowest values of MIC and MBC or MFC (from 0.260 to 0.877 and 0.310 to 1.316 mg/mL, respectively, for bacteria, and from 1.975 to 2.5 and 2.5 to 4.444 mg/mL, respectively, for fungi). Interestingly, the tested extracts inhibited microbial growth in tomato paste and pasteurized cow milk for a long storage period (increase shelf life) as compared to the control samples. In conclusion, herbal and spice extracts could be successfully applied as natural antimicrobials for the elimination of food borne microbes and pathogen growth.
The current study aimed to evaluate the chemical, phytochemical, and sensory properties; the nutritional value; and the antioxidant properties resulting from the incorporation of yogurt fortified with the aqueous extract of Hawthorn leaves in Sprague Dawley rats. The results revealed that the yogurt containing the aqueous extract from Hawthorn leaves exhibited no significant differences in terms of its protein, fat, and ash contents compared to control samples. Moreover, the highest total phenolic content (62.00 ± 1.70) and antioxidant activity (20.60 ± 0.74%) were detected in the yogurt containing 0.4% Hawthorn leaf extract compared to the other samples. The consumption of yogurt fortified with the aqueous extract from Hawthorn leaves by rats experiencing oxidative stress resulted in a significant decrease (p ≤ 0.05) in the triglyceride, total cholesterol, low-density lipoprotein, aspartate aminotransferase, alanine aminotransferase, creatinine, urea, and malondialdehyde levels and a remarkable increase (p ≤ 0.05) in the high-density lipoprotein, total protein, and albumin levels as well as in the total antioxidant potentials of serum compared to the positive control group, indicating that the extract from Hawthorn leaves can play a preventive role against oxidative stress. Collectively, our study concluded that the extract from Hawthorn leaves can provide health benefits to yogurt on the basis of its high bioactive components and can exert protective effects against oxidative stress in rats.
Fermented dairy products have been associated with multiple health benefits. The present study aimed to produce a functional yogurt drink fortified with golden berry juice and assess its therapeutic effect on hepatitis rats. Thirty male albino rats were randomly divided into two major groups. The first group included the control (-) animals (six rats) and was fed a standard diet, whereas the second group included 24 rats that were fed a standard diet and injected with carbon tetrachloride (CCl4) for 2 weeks to trigger chronic damage of the liver (hepatitis); they were then divided into four groups (six rats/group): Group 2: hepatitis, fed on a standard diet as a positive control group; Group 3: received a basal diet with 5 mL of the yogurt drink; Group 4: received a basal diet with 5 mL of the yogurt drink fortified with 10% golden berry juice. Group 5: received a basal diet with 5 mL of the yogurt drink fortified with 20% golden berry juice. Various biological parameters were determined. Yogurt drink treatments were evaluated for their chemical, phytochemical, and sensory properties, as well as for their effects on hepatoprotective activity by determining various biochemical parameters. We found that the yogurt drinks containing golden berry juice exhibited no significant differences in fat, protein, and ash content compared with the control samples. Moreover, the yogurt drinks containing golden berry juice exhibited the highest content of total phenolic compounds, antioxidant activity, and organoleptic scores among all treatments. In addition, rats fed on a diet fortified with yogurt drinks containing golden berry juice for 8 weeks exhibited higher potential hepatoprotective effects compared with the liver injury control group. This improvement was partly observed in the group that received the yogurt drink containing golden berry juice. Therefore, we concluded that golden berry juice can be recommended as a natural additive in the manufacture of functional yogurt drinks, as it showed a potential hepatoprotective effect in rats with hepatitis.
The present study was conducted to evaluate physicochemical, rheological, microbiological, antioxidant and sensory properties of probiotic fermented camel milk made from camel milk mixed with Oat milk. Fermented camel milk was made from camel milk served as a control, and the other treatments were made from camel milk after mixing with 25 and 50 % Oat milk. Results revealed that mixing of camel's milk with Oat milk were more effective in increasing the total solids, protein, ash, fiber , acidity , viscosity, phenolic content and antioxidant activity and these increments were proportional to the mixing ratio. Fermented camel milk containing 50 % Oat milk had the highest scores for sensory properties compared to other fermented camel milk treatments. This blend (fermented camel milk containing 50 % Oat milk) was evaluated as hypoglycaemic agent streptozotocin-induced diabetic rats. In this respect, twenty four male adult albino rats of Sprague Dawely strain weighing 150-185 g were divided into 4 groups as follows: Group (1) non-treated non-diabetic rats (negative control). Group (2) diabetic rats (received Streptozotocin (STZ), 60 mg/Kg BW) (positive control).Group (3) diabetic rats fed on basal diet with fermented camel milk (10g/day) by epi gastric tube. Group (4) diabetic rats fed on basal diet with fermented camel milk containing 50 % Oat milk (10g/day) by epi gastric tube. The treatment of diabetic rats with fermented camel milk containing 50 % Oat milk showed a significant decreases(p<0.001) in levels of blood glucose, malondialdehyde (MDA), low density lipoprotein (LDL), cholesterol (CL), triglyceride (TG), AST, ALT , ALP, creatinin and urea and increased (p<0.001) high density lipoprotein (HDL) and total protein and albumin in comparison to diabetic rats. Consumption of fermented camel milk containing 50 % Oat milk in diabetic rat groups caused significant improvement in allالنوعية التربية وبحوث اسات در مجمة these factors, compared to the positive control group (untreated diabetic rats). Also in this study, for the first time, we demonstrated that administration of fermented camel milk containing 50 % Oat milk in diabetic rats resulted in enhanced of blood complications compared to the untreated diabetic group, indicating that fermented camel milk containing 50 % Oat milk can play a preventive role in such patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.