We discuss robust M‐estimation of INARCH models for count time series. These models assume the observation at each point in time to follow a Poisson distribution conditionally on the past, with the conditional mean being a linear function of previous observations. This simple linear structure allows us to transfer M‐estimators for autoregressive models to this situation, with some simplifications being possible because the conditional variance given the past equals the conditional mean. We investigate the performance of the resulting generalized M‐estimators using simulations. The usefulness of the proposed methods is illustrated by real data examples.
We discuss robust estimation of INARCH models for count time series, where each observation conditionally on its past follows a negative binomial distribution with a constant scale parameter, and the conditional mean depends linearly on previous observations. We develop several robust estimators, some of them being computationally fast modifications of methods of moments, and some rather efficient modifications of conditional maximum likelihood. These estimators are compared to related recent proposals using simulations. The usefulness of the proposed methods is illustrated by a real data example.
We discuss the analysis of count time series following generalised linear models in the presence of outliers and intervention effects. Different modifications of such models are formulated which allow to incorporate, detect and to a certain degree distinguish extraordinary events (interventions) of different types in count time series retrospectively. An outlook on extensions to the problem of robust parameter estimation, identification of the model orders by robust estimation of autocorrelations and partial autocorrelations, and online surveillance by sequential testing for outlyingness is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.