The spread of Internet and social media led to be sentiment analysis an open research area. Social media is used so the people can be state their opinions and attitudes on blogs, Tweets, and forums. Sentiment analysis deals with identifying and extracting people's opinions and attitudes from texts on the internet. The classification of the text which is based upon sentiment is differ from topical text classification because it has recognition based on an opinion on a topic. This research studying the ability to apply TF-IDF feature selection approach for sentiment analysis and examines the performance for classification by 4 machine learning methods (naïve Bayes, KNN, J48, and logistic regression) with regard to recall, precision and F1-measure. This research included a comparison between the selected ML methods. The results show the naïve Bayes over performed on other classification methods with precision about 94.0%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.