No abstract
Emergency Departments (EDs) provide an imperative source of medical care. Central to the ED workflow is the patientcaregiver scheduling, directed at getting the right patient to the right caregiver at the right time. Unfortunately, common ED scheduling practices are based on ad-hoc heuristics which may not be aligned with the complex and partially conflicting ED’s objectives. In this paper, we propose a novel online deep-learning scheduling approach for the automatic assignment and scheduling of medical personnel to arriving patients. Our approach allows for the optimization of explicit, hospitalspecific multi-variate objectives and takes advantage of available data, without altering the existing workflow of the ED. In an extensive empirical evaluation, using real-world data, we show that our approach can significantly improve an ED’s performance metrics.
The generalization of Shannon's theory to include messages with given autocorrelations is presented. The analytical calculation of the channel capacity is based on the transfer matrix method of the effective 1D Hamiltonian. This bridge between statistical physics and information theory leads to efficient Low-Density Parity-Check Codes over Galois fields that nearly saturate the channel capacity. The novel idea of the decoder is the dynamical updating of the prior block probabilities which are derived from the transfer matrix solution and from the posterior probabilities of the neighboring blocks. Application and possible extensions are discussed, specifically the possibility of achieving the channel capacity without compression of the data.
Emergency Departments (EDs) provide an imperative source of medical care. Central to the ED workflow is the patientcaregiver scheduling, directed at getting the right patient to the right caregiver at the right time. Unfortunately, common ED scheduling practices are based on ad-hoc heuristics which may not be aligned with the complex and partially conflicting ED's objectives. In this paper, we propose a novel online deep-learning scheduling approach for the automatic assignment and scheduling of medical personnel to arriving patients. Our approach allows for the optimization of explicit, hospital-specific multi-variate objectives and takes advantage of available data, without altering the existing workflow of the ED. In an extensive empirical evaluation, using real-world data, we show that our approach can significantly improve an ED's performance metrics.
Background Mental health contact centers (also known as Hotlines) offer crisis intervention and counselling by phone calls and online chats. These mental health helplines have shown great success in improving the mental state of the callers, and are increasingly becoming popular in Israel and worldwide. Unfortunately, our knowledge about how to conduct successful routing of callers to counselling agents has been limited due to lack of large-scale data with labeled outcomes of the interactions. To date, many of these contact centers are overwhelmed by chat requests and operate in a simple first-come-first-serve (FCFS) scheduling policy which, combined, may lead to many callers receiving suboptimal counselling or abandoning the service before being treated. In this work our goal is to improve the efficiency of mental health contact centers by using a novel machine-learning based routing policy. Methods We present a large-scale machine learning-based analysis of real-world data from the online contact center of ERAN, the Israeli Association for Emotional First Aid. The data includes over 35,000 conversations over a 2-years period. Based on this analysis, we present a novel call routing method, that integrates advanced AI-techniques including the Monte Carlo tree search algorithm. We conducted an experiment that included various realistic simulations of incoming calls to contact centers, based on data from ERAN. We divided the simulations into two common settings: standard call flow and heavy call flow. In order to establish a baseline, we compared our proposed solution to two baseline methods: (1) The FCFS method; and (2) a greedy solution based on machine learning predictions. Our comparison focuses on two metrics - the number of calls served and the average feedback of the callers (i.e., quality of the chats). Results In the preliminary analysis, we identify indicative features that significantly contribute to the effectiveness of a conversation and demonstrate high accuracy in predicting the expected duration and the callers’ feedback. In the routing methods evaluation, we find that in heavy call flow settings, our proposed method significantly outperforms the other methods in both the quantity of served calls and average feedback. Most notably, we find that in the heavy call flow settings, our method improves the average feedback by 24% compared to FCFS and by 4% compared to the greedy solution. Regarding the standard-flow setting, we find that our proposed method significantly outperforms the FCFS method in the callers’ average feedback with a 12% improvement. However, in this setting, we did not find a significant difference between all methods in the quantity of served-calls and no significant difference was found between our proposed method and the greedy solution. Conclusion The proposed routing policy has the potential to significantly improve the performance of mental health contact centers, especially in peak hours. Leveraging artificial intelligence techniques, such as machine learning algorithms, combined with real-world data can bring about a significant and necessary leap forward in the way mental health hotlines operate and consequently reduce the burden of mental illnesses on health systems. However, implementation and evaluation in an operational contact center is necessary in order to verify that the results replicate in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.