As the internet and connected objects gain more and more in popularity, serving the ever-increasing data traffic becomes a challenge for the mobile operators. The traditional cellular radio access network (RAN), where each base station is co-located with its own processing unit and is responsible for a specific geographic area, has evolved first with the so-called Cloud RAN (C-RAN), and is currently undergoing further architectural evolution under the virtualized RAN (vRAN), Software-Defined RAN (SD-RAN), and Open RAN (O-RAN) architectures. In all these versions, the data processing units can be dynamically centralized into a pool and shared between several base stations, enlarging the geographical view for scheduling and resource allocation algorithms. For instance, resource utilisation is improved by avoiding resource idling during off-peak hours. C-RAN and vRAN gains depend strongly on the clustering scheme of radio units (RRHs and RUs). In this paper, we propose a novel radio clustering algorithm that takes into account both the traffic demand and the position of stations, by using the hyperbolic distance in 3-dimensions. We introduce a modified K-means clustering algorithm, called Hyperbolic K-means, and show that this generates geographically compact RU clusters with traffic charge equally shared among them. Application of our algorithm on real-world mobile data traffic, collected from the cities of Nantes and Lille in France, shows an increase in resource utilisation by 25%, and a reduction in deployment cost by 15%, compared to the standard RAN. Furthermore, the performance of our Hyperbolic K-means algorithm is compared extensively against alternative C-RAN clustering proposals from the literature and is shown to outperform them, in resource utilisation as well as in cost reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.