This study was conducted to investigate the effect of heat stress on the physiology of dairy cows and to detect the relationship between rectal temperature (RT) and respiration rate (RR), heart rate (HR), and plasma concentrations of cortisol, thyroxine, and prolactin. During the experiment, 44 Holstein cows were allocated to two groups for each season. The average temperature-humidity index (THI) values were 55 ± 2.31 in winter and 78 ± 1.9 in summer. As the THI values increased from 55 to 78, RR rose by 35 inspirations per minute, HR by 3 beats per minute, and RT by 1.2 °C. In addition, the average concentration of cortisol increased from 19.30 to 21.04 nmol/L, and prolactin from 58.52 to 129.79 ngm/L, whereas free thyroxine decreased from 15.43 to 14.01 pmol/L. Plasma sodium and potassium concentrations were similar in the two seasons. These results confirmed that RT is an indicator of the response in dairy cows to hot environmental temperatures. However, they also showed signs of stress, which were reflected in higher levels of cortisol and in certain physiological responses.
This work aims to study the relationship between variations of the Temperature‐Humidity Index (THI) and the parameters of reproduction especially the first conception rate (FCR) and to determine the threshold THI value where cows’ fertility rate dropped in 12 Holstein dairy herds raised in the arid climatic conditions of Tunisia. THI values were calculated over 22 years (1996–2018), and the mean monthly temperature and relative humidity data were obtained from the Meteorological Institute of Tunisia. A total of 20,396 individual records (Insemination and calving dates) were extracted from the Livestock and Pasturing Office (OEP, Tunisia) with regard to the highest THI before breeding, on the breeding day, and after breeding. Statistical analysis was performed using the GLM procedure of SAS software. Results point to the fact that a summer heat stress exists in southeast Tunisia and lasts for 4 months starting from June until September with THI values fluctuating between 73 ± 2.38 and 79 ± 3.01 exceeding, therefore, THI threshold of 72. Increased THI from ≤70 to ≥80 units was associated with drops in conception rate (CR) and fertility rate (FR) of 49% and 45% giving a correlation with the THI of (r = −.72, p < .05) and (r = −.74, p < .05), respectively. When cows were inseminated on extremely hot days (THI ≥ 80) preceded by cooler temperatures, pregnancy by service (P/AI) was 7% points higher than for other cows that were exposed to high temperatures before breeding. The average number of insemination was higher (p < .05) from THI ≤ 70 (2.01) compared to THI ≥ 80 (3.41). Cows calving during an absence of heat stress (THI ≤ 70) have the shortest average calving intervals (CI: 420 ± 15.1 days). Contrastly, calving in the condition of heat stress (THI ≥ 80) has the longest CI (487 ± 12.8 days). For each point increase in the THI value above 67, there is a decrease in the first conception rate by 1.39%. In this particular arid environment, high‐yielding Holstein cows’ breeding success is strongly affected by heat stress that takes place just before or after breeding.
Climate changes affect the economic viability of livestock. Therefore, this study aimed to characterize the heat stress in Holstein cattle raised in the arid region of Tunisia as well as to evaluate the effect of the temperature-humidity index (THI) on daily milk production and components. For this reason, 76940 monthly individual records collected from 1995 to 2018 from 3056 Holstein cows were used. THI calculated from ambient temperature and relative humidity was used as a measure of heat stress. To study the effect of THI on milk production, a repeated measures linear mixed model was used. Results showed a significant (P<0.01) decrease in daily milk yield, daily protein, and fat content in all cow's parity classes. For each point increase of the THI values beyond 64, milk yield, fat, and protein contains decreased by 0.32 kg, 0.09, and 0.06 %, respectively. Moreover, when the THI value varied from 64 to 85, fat content decreased by 29 %, protein by 17 %, and milk production by 30 %. Heat stress impact negatively milk production and milk components of dairy cows. These results can be a way to improve the length of productive life for Holstein dairy cattle in the hard climate. Serious management strategies are needed to improve dairy cow productivity and minimize the heat stress impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.