Centaurea calcitrapa has been intensively utilized in ethnomedicinal practices as a natural therapeutic recipe to cure various ailments. The current study aimed to chemically characterize ethanolic extract of C. calcitrapa (EECC) aerial parts (leaves and shoots) by use of gas chromatography-mass spectrometry analyses (GC-MS) and investigate its antioxidant and in vitro anticancer activities, elucidating the underlying molecular mechanism by use of flow cytometry-based fluorescence-activated cell sorting (FACS) and conducting in silico assessment of binding inhibitory activities of EECC major compounds docked to caspase-3. CG-MS profiling of EECC identified a total of 26 major flavonoids and polyphenolic compounds. DPPH and ABTS assays revealed that EECC exhibits potent antioxidant activity comparable to standard reducing agents. Results of the proliferation assay revealed that EECC exhibit potent, dose-dependent cytotoxic activities against triple-positive (MCF-7) and triple-negative (MDA-MB-231) breast cancer cell models, with IC50 values of 1.3 × 102 and 8.7 × 101 µg/mL, respectively. The observed cytotoxic effect was specific to studied cancer cells since EECC exhibited minimal (~<10%) cytotoxicity against MCF-12, a normal breast cell line. FACS analysis employing annexin V-FITC/propidium iodide double labeling demonstrated that the observed anti-proliferative activity against MCF-7 and MDA-MB-231 was mediated via apoptotic as well as necrotic signaling transduction processes. The increase in fluorescence intensity associated with DCFH oxidation to DCF, as reported by FACS, indicated that apoptosis is caused by generation of ROS. The use of caspase-3-specific fluorogenic substrate revealed a dose-dependent elevation in caspase-3 substrate-cleavage activity, which further supports EECC-mediated apoptosis in MCF-7 cells. The major EECC compounds were examined for their inhibitory activity against caspase-3 receptor (1HD2) using molecular docking. Three compounds exhibited the highest glide score energy of −5.156, −4.691 and −4.551 kcal/mol, respectively. Phenol, 2,6-dimethoxy established strong binding in caspase-3 receptor of hydrogenic type, with residue ARG 207 and of PI-PI stacking type with residue HIS 121. By contract, hexadecenoic acid showed 3 H-bond with the following residues: ASN 615, ASN 616a and THR 646. Taken together, the current findings reveal that EECC exhibits significant and specific cytotoxicity against breast cancer cells mediated by the generation of ROS and culminating into necrosis and apoptosis. Further investigations of the phytoconstituents-rich C. calcitrapa are therefore warranted against breast as well as other human cancer cell models.
The cyanobacterium Arthrospira platensis (A. platensis)—a genus of nonheterocystous filamentous cyanobacteria—is used in industrial applications and as a food supply. The current research work aims to study the physicochemical characteristics of A. platensis indigenous to the Moroccan Atlantic coast at Laayoune (Foum El Oued lagoon). The contents of proteins, carbohydrates, vitamins, lipids, minerals, heavy metals, energy value, humidity, ash, pigments, and tannins in A. platensis were investigated using protocols as described in the earlier literature. The values of protein, carbohydrate, and lipid contents in A. platensis were 58.9 ± 0.07, 14.67, and 45.54% respectively. The values of vitamins B2 and B3 dosed in A. platensis were 1.31 ± 0.19 and 30.8 ± 0.001 mg/kg, respectively. The values of heavy metals including lead and chromium were 70 ± 4.5 and 5 ± 0.5 PPB (parts-per-billion), respectively; however, no trace concerning cadmium was detected. The values of energy value, humidity, and ash content were 346.48 ± 0.21, 11.6 ± 0.17%, and 9.1 ± 0.21% kcal/100 g, respectively. The results of pigment content showed the presence of chlorophyll b, chlorophyll a, and carotenoids of 37.506 ± 3.38, 26.066 ± 3.08, and 9.52 ± 0.22 mg/g, respectively. The results obtained revealed that A. platensis indigenous to the Moroccan Atlantic coast at Laayoune was found to be very rich in proteins, carbohydrates, vitamins, minerals, ash, and pigments and lower in heavy metals and saturated fats when compared with species investigated in the literature. Thus, A. platensis indigenous to the Moroccan Atlantic coast at Laayoune fulfills the requirements for being used as dietary supplements.
Origanum majorana is a plant from the Lamiaceae family. It is a medicinal plant used in traditional medicine in Morocco to treat various diseases. This work aims to determine the phytochemical composition of Marjoram, as well as to evaluate its cytotoxic effect on the cells of healthy subjects. All parts of the plant (roots, leaves, stems, etc.) were subjected to selective extraction with different solvents of increasing polarity (Diethyl ether, Dichloromethane, Ethanol, Methanol) using the rotary steamer. The yields obtained are respectively 1.34%, 4.57%, 9.98%, and 10%. The phytochemical tests carried out have detected the presence of polyphenols, tannins, fl avonoids, terpenoids, sterols, saponins, and reducing sugars. In contrast, the absence of the family of cardiotonic alkaloids, quinones, and heterosides. Origanum majorana L. exhibited concentration-dependent inhibitory effects on 2,2′-diphenylpicrylhydrazyl (DPPH) with IC 50 equal 2.308 mg/ml, related to the presence of the same content of polyphenols and fl avonoids but with the lowest concentration of tannin content. The cytotoxicity of the hydro-ethanolic extract of Marjoram was evaluated by the MTT colorimetric method. However, the results obtained that the examined extract was devoid of cytotoxic activity, on the other hand, it induced cell proliferation. O. majorana has good potential to prevent diseases caused by the overproduction of free radicals, and that it can be used as natural antioxidant agents and cell proliferation dependant on concentration.
Due to poor diagnosis breast cancer in women has emerged as the most common cause of death disease in developing countries. Medicinal plants have been used for thousands of years and can be useful in healthcare, especially in developing countries. Ethanol extracts of leaves of fire bush or arta (Calligonum comosum; EECC), exhibited significant anticancer potencies against two breast cancer cell lines, MCF-7 and MDA 231. These in vitro effects of EECC indicated potential anticancer activities that were determined to be specific since minimal toxicity was recorded against MCF-12, a non-cancerous breast cell line used as a reference. EECC also induced cell cycle arrest in MCF-7 and MDA 231 as revealed by the increased proportions of sub-G1 cells. Fluorescence-activated cell sorter analysis (FACS), utilizing double staining by annexin V-FITC/propidium iodide, revealed that the observed cytotoxic effects were mediated via apoptosis and necrosis. FACS measurement of thegreater in fluorescence intensity, linked with oxidation of DCFH to DCF, revealed that apoptosis was attributable to production of free radicals. EECC-mediated apoptosis was further validated by observation of up-regulation in the “executioner” enzyme, caspase 3. The current findings reveal that EECC exhibits significant, selective cytotoxicity to breast cancer cells, that proceeds via the generation of ROS, which culminates in apoptosis. The anti-proliferative effects of EECC weres further verified by use of a structure-based, virtual screening between its major bioactive polyphenolic constituents and the apoptosis executioner marker enzyme, caspase-3. Based on their glide score values against the active site of caspase 3, some phyto-constituents present in EECC, such as DL-alpha-tocopherol and campesterol, exhibited distinctive, drug-like potential with no predicted toxicity to non-target cells. Taken together, the usefulness of natural phenolic and flavonoid compounds contained in Calligonum comosum were suggested to be potent anticancer agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.