Abstract-Kohonen self-organization algorithm, known as "topologic maps algorithm", has been largely used in many applications for classification. However, few theoretical studies have been proposed to improve and optimize the learning process of classification and clustering for dynamic and scalable systems taking into account the evolution of multi-parameter objects. Our objective in this paper is to provide a new approach to improve the accuracy and quality of the classification method based on the basic advantages of the Kohonen self-organization algorithm and on new network functions to pre-eliminate the auto-detected of drawbacks and redundancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.