This paper deals with nonlinear Fredholm integral equations of the second kind. We study the case of a weakly singular kernel and we set the problem in the space L 1 ([a, b], C). As numerical method, we extend the product integration scheme from
A Fredholm integral equation of the second kind in L1([a, b], C) with a weakly singular kernel is considered. Sufficient conditions are given for the existence and uniqueness of the solution. We adapt the product integration method proposed in C0 ([a, b], C) to apply it in L1 ([a, b], C), and discretize the equation. To improve the accuracy of the approximate solution, we use different iterative refinement schemes which we compare one to each other. Numerical evidence is given with an application in Astrophysics.
In this paper, we consider general cases of linear Volterra integral equations under minimal assumptions on their weakly singular kernels and introduce a new product integration method in which we involve the linear interpolation to get a better approximate solution, figure out its effect and also we provide a convergence proof. Furthermore, we apply our method to a numerical example and conclude this paper by adding a conclusion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.