Activation of the hepatocyte growth factor receptor Met induces a morphogenic response and stimulates the formation of branching tubules by Madin-Darby canine kidney (MDCK) epithelial cells in three-dimensional cultures. A constitutively activated ErbB2/Neu receptor, NeuNT, promotes a similar invasive morphogenic program in MDCK cells. Because both receptors are expressed in breast epithelia, are associated with poor prognosis, and hepatocyte growth factor (HGF) is expressed in stroma, we examined the consequence of cooperation between these signals. We show that HGF disrupts NeuNT-induced epithelial morphogenesis, stimulating the breakdown of cell-cell junctions, dispersal, and invasion of single cells. This correlates with a decrease in junctional proteins claudin-1 and E-cadherin, in addition to the internalization of the tight junction protein ZO-1. HGF-induced invasion of NT-expressing cells is abrogated by pretreatment with a pharmacological inhibitor of the mitogen-activated protein kinase kinase (MEK) pathway, which restores E-cadherin and ZO-1 at cell-cell junctions, establishing the involvement of MEK-dependent pathways in this process. These results demonstrate that physiological signals downstream from the HGF/Met receptor synergize with ErbB2/Neu to enhance the malignant phenotype, promoting the breakdown of cell-cell junctions and enhanced cell invasion. This is particularly important for cancers where ErbB2/Neu is overexpressed and HGF is a physiological growth factor found in the stroma.
Tight control of cell proliferation and morphogenesis is required to ensure normal tissue patterning and prevent cancer formation. Overexpression of the ErbB-2/Neu receptor tyrosine kinase is associated with increased progression in human breast cancer, yet in breast explant cultures, the ErbB-2/Neu receptor contributes to alveolar di erentiation. To examine the consequence of deregulated ErbB-2/Neu activation on epithelial morphogenesis, we have expressed a constitutively activated mutant of ErbB-2/Neu in a Madin ± Darby canine kidney (MDCK) epithelial cell model. Using two-dimensional cultures we demonstrate that activated ErbB-2/Neu induces breakdown of cell ± cell junctions, increased cell motility and dispersal of epithelial colonies. This correlates with reorganization of the actin cytoskeleton and focal adhesions and loss of insoluble cell ± cell junction complexes involving E-cadherin. Interestingly, a constitutively activated ErbB-2/Neu receptor promotes an invasive morphogenic program in MDCK cells in a three-dimensional matrix. We show that two tyrosines in the carboxy-terminal tail of ErbB-2/Neu, involved in the phosphorylation of the Shc adapter protein, are each su cient to promote epithelial-mesenchymal like transition and enhanced cell motility in two-dimensional culture and cell invasion rather than a morphogenic response in matrix culture. This provides a model system to investigate ErbB-2/Neu induced signaling pathways required for epithelial cell dispersal and invasion versus morphogenesis. Oncogene (2001) 20, 788 ± 799.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.