a b s t r a c tTo address the challenge of logistics routing decision under uncertain environment, this paper studies a fourth party logistics routing problem (4PLRP) with uncertain delivery time (4PLRPU). A novel 4PLRPU model based on uncertainty theory is proposed by describing the delivery time of a third party logistics (3PL) provider as an uncertain variable. After that, the model is transformed into an equivalent deterministic model, and several improved genetic algorithms are designed to get solutions. To handle the problem of infeasible solutions in the proposed 4PLRPU, an improved node-based genetic algorithm (INGA) and an improved distance-based genetic algorithm (IDGA) are developed to reduce the computing time required to repair infeasible solutions, and an improved genetic algorithm based on the simple graph and Dijkstra algorithm (SDGA) is proposed to avoid the generation of infeasible solutions. Numerical experiments are conducted to investigate the performance of the proposed algorithms and verify the effectiveness of the proposed 4PLRPU model. The results show that INGA and SDGA are more effective than the standard genetic algorithm and IDGA at solving large-scale problems. Additionally, compared with the expected value model, the 4PLRPU model is more robust.
Workforce scheduling is an important and common task for projects with high labour intensities. It becomes particularly complex when employees have multiple skills and the employees’ productivity changes along with their learning of knowledge according to the tasks they are assigned to. Till now, in this context, only little work has considered the minimum quality limit of tasks and the quality learning effect. In this research, the workforce scheduling model is developed for assigning tasks to multiskilled workforce by considering learning of knowledge and requirements of project quality. By using piecewise linearization to learning curve, the mixed 0-1 nonlinear programming model (MNLP) is transformed into a mixed 0-1 linear programming model (MLP). After that, the MLP model is further improved by taking account of the upper bound of employees’ experiences accumulation, and the stable performance of mature employees. Computational experiments are provided using randomly generated instances based on the investigation of a software company. The results demonstrate that the proposed MLPs can precisely approach the original MNLP model but can be calculated in much less time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.