A novel metamorphic anthropomorphic hand is for the first time introduced in this paper. This robotic hand has a reconfigurable palm that generates changeable topology and augments dexterity and versatility of the hand. Structure design of the robotic hand is presented and based on mechanism decomposition kinematics of the metamorphic anthropomorphic hand is characterized with closed-form solutions leading to the workspace investigation of the robotic hand. With characteristic matrix equation, twisting motion of the metamorphic robotic hand is investigated to reveal both dexterity and manipulability of the metamorphic hand. Through a prototype, grasping and prehension of the robotic hand are tested to illustrate characteristics of the new metamorphic anthropomorphic hand.
Suturing and tying knots assisted by surgical robot systems are complicated and time-consuming tasks in minimally invasive surgery (MIS). It is almost impossible to perform these operations in laryngeal MIS because motions of the end-effectors are greatly confined by a narrow and long laryngoscope tube. This paper presents the robotassisted operations of suturing and knot-tying in a laryngeal surgery under a self-retaining laryngoscope, which has a greatly confined workspace. In order to use robot assistance to perform the suturing and knot-tying tasks in such a workspace, an appropriate suturing path is planned. The suturing path planning is completed based on a knot-tying algorithm called the bending-twisting knot-tying (BTKT). A robot system for laryngeal MIS called MicroHand III is designed. The kinematical model of the system is developed in the paper. The simulation and experimental results have shown that suturing and knot-tying assisted by MicroHand III system are successful.
To solve the troubles existing in laryngeal surgical operation and extend surgeon's ability, a master-slave robot system with the name "Microhand-" was designed. The novel slave robot employs hybrid mechanism and enables the 7 DOF end effector complex surgical manipulation ability. Mechanical details of the slave robot were described and an experiment prototype was established. The kinematics of master device and slave robot were studied followed by the master-slave mapping arithmetic. Redundancy control solution for the slave manipulator trajectory planning was also investigated. The experiment results approved both the design of the system and the master-slave mapping arithmetic. Suturing experiment further validated the potential of the system to enhance the laryngeal surgical operation.I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.