Photothermal conversion materials based on tetrapyridylporphyrin (TPyP) were studied and were found to possess a polypyrrole macrocyclic framework (18π electrons), which makes them exhibit strong absorption in the 300–800 nm region and high photothermal conversion.
Corrosion fatigue is an important factor that limits the life of grid materials including wire clips. In order to study the effect of corrosion fatigue and to select suitable grid steels, this paper focuses on the corrosion fatigue properties of Q235 carbon steel, Q235 galvanized steel, and 316L stainless steel in the corrosive environments of air, 2wt% NaCl, 5wt% NaCl, and 8wt% NaCl. Through the fatigue test in the corrosive environment, and the surface morphology scanning and microstructure observation of the fracture, the following conclusions are drawn: the three materials are more susceptible to corrosion fatigue in the Cl− environment, and the higher the Cl− concentration, the greater the likelihood of fracture caused by corrosion fatigue for these three materials. By analyzing the surface roughness, dimples, and cracks in the microstructure, it is found that 316L stainless steel is highly sensitive to Cl− corrosion under cyclic stress, and Q235 galvanized steel is more resistant to Cl−. By plotting the stress fatigue life curve of Q235 galvanized steel, it is found that the corrosion fatigue life decreases as the Cl− concentration increases. For wire clips in areas with severe Cl− pollution, Q235 galvanized steel should be selected to achieve the best anti-corrosion fatigue effect; at the same time, the original parts should be repaired or replaced in a timely manner based on the predicted corrosion fatigue life.
SF6 decomposition product analysis is one of the most convenient and efficient methods to diagnose the potential faults of SF6 insulated electric equipment in the early stage. Based on SF6 decomposition characteristic gas analysis, the operation state of SF6 insulated power equipment can be judged by on-line monitoring, so as to ensure its normal operation. Raman spectrum analysis technology can realize the nondestructive detection of gas samples with a single wavelength laser. It has excellent applicability and high efficiency for the detection of SF6 decomposition characteristic components. In this paper, molecular configurations of CF4, CO, H2S, SO2 were obtained by B3LYP functional that based on density functional theory (DFT), and the Raman frequency and intensity characteristics were calculated by 6-31G (2df, p) basis group. The results were compared with National Institute of Standards and Technology (NIST) standard frequencies and it was found that the optimized configuration has no virtual frequency. The characteristic peaks of CO, CF4, SO2 and H2S that were identified by Raman spectrum are respectively 2221.11, 908.97, 1175.24 and 2688.82 cm-1, which are basically consistent with the corresponding NIST standard values. This study not only shows that the Raman spectrum of SF6 decomposition products calculated by B3LYP functional function is reliable, but provides a reference for the quantitative detection of SF6 decomposition products based on Raman spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.