To understand the distribution of the cultivable fungal community in plant tissues and the associations of these fungi with their surrounding environments during the geographical expansion of an invasive plant, Ageratina adenophora, we isolated the cultivable fungi from 72 plant tissues, 12 soils, and 12 air samples collected from six areas in Yunnan Province, China. A total of 4066 isolates were investigated, including 1641 endophytic fungi, 233 withered leaf fungi, 1255 fungi from air, and 937 fungi from soil. These fungi were divided into 458 and 201 operational taxonomic units (OTUs) with unique and 97% ITS gene sequence identity, respectively. Phylogenetic analysis showed that the fungi belonged to four phyla, including Ascomycota (94.20%), Basidiomycota (2.71%), Mortierellomycota (3.03%), and Mucoromycota (0.07%). The dominant genera of cultivable endophytic fungi were Colletotrichum (34.61%), Diaporthe (17.24%), Allophoma (8.03%), and Fusarium (4.44%). Colletotrichum and Diaporthe were primarily isolated from mature leaves, Allophoma from stems, and Fusarium from roots, indicating that the enrichment of endophytic fungi is tissue-specific and fungi rarely grew systemically within A. adenophora. In the surrounding environment, Alternaria (21.46%), Allophoma (19.31%), Xylaria (18.45%), and Didymella (18.03%) were dominant in the withered leaves, Cladosporium (22.86%), Trichoderma (14.27%), and Epicoccum (9.83%) were dominant in the canopy air, and Trichoderma (27.27%) and Mortierella (20.46%) were dominant in the rhizosphere soils. Further analysis revealed that the cultivable endophytic fungi changed across geographic areas and showed a certain degree of variation in different tissues of A. adenophora. The cultivable fungi in mature and withered leaves fluctuated more than those in roots and stems. We also found that some cultivable endophytic fungi might undergo tissue-to-tissue migration and that the stem could be a transport tissue by which airborne fungi infect roots. Finally, we provided evidence that the fungal community within A. adenophora
Background Gastrodia elata is a widely distributed achlorophyllous orchid and is highly valued as both medicine and food. Gastrodia elata produces dust-like seeds and relies on mycorrhizal fungi for its germination and growth. In its life cycle, G. elata is considered to switch from a specific single-fungus relationship ( Mycena ) to another single-fungus relationship ( Armillaria ). However, no studies have investigated the changes in the plant-fungus relationship during the growth of G. elata in the wild. In this study, high-throughput sequencing was used to characterize the fungal community of tubers in different growth phases as well as the soils surrounding G. elata . Results The predominant fungi were Basidiomycota (60.44%) and Ascomycota (26.40%), which exhibited changes in abundance and diversity with the growth phases of G. elata . Diverse basidiomycetes in protocorms (phase P) were Hyphodontia , Sistotrema , Tricholoma , Mingxiaea , Russula , and Mycena , but the community changed from a large proportion of Resinicium bicolor (40%) in rice-like tubers (phase M) to an unidentified Agaricales operational taxonomic unit 1(OTU1,98.45%) in propagation vegetation tubers (phase B). The soil fungi primarily included Simocybe , Psathyrella , Conocybe , and Subulicystidium . Three Mycena OTUs obtained in this study were differentially distributed among the growth phases of G. elata , accounting for less than 1.0% of the total reads, and were phylogenetically close to Mycena epipterygia and M. alexandri . Conclusions Our data indicated that G. elata interacts with a broad range of fungi beyond the Mycena genus. These fungi changed with the growth phases of G. elata . In addition, these data suggested that the development of the fungal community during the growth of G. elata was more complex than previously assumed and that at least two different fungi could be involved in development before the arrival of Armillaria . Electronic supplementary material The online version of this article (10.1186/s12866-019-1501-z) contains supplementary material, which is available to authorized users.
Endophytes proved to exert multiple effects on host plants, including growth promotion, stress resistance. However, whether endophytes have a role in metabolites shaping of grape has not been fully understood. Eight endophytic fungal strains which originally isolated from grapevines were re-inoculated to field-grown grapevines in this study, and their effects on both leaves and berries of grapevines at maturity stage were assessed, with special focused on secondary metabolites and antioxidant activities. High-density inoculation of all these endophytic fungal strains modified the physio-chemical status of grapevine to different degrees. Fungal inoculations promoted the content of reducing sugar (RS), total flavonoids (TF), total phenols (TPh), trans-resveratrol (Res) and activities of phenylalanine ammonia-lyase (PAL), in both leaves and berries of grapevine. Inoculation of endophytic fungal strains, CXB-11 (Nigrospora sp.) and CXC-13 (Fusarium sp.) conferred greater promotion effects in grape metabolic re-shaping, compared to other used fungal strains. Additionally, inoculation of different strains of fungal endophytes led to establish different metabolites patterns of wine grape. The work implies the possibility of using endophytic fungi as fine-tuning regulator to shape the quality and character of wine grape.
To examine bacterial community composition in rhizosphere of plants colonizing on mine tailings and phylogenetic differences between subcommunities resistant to different metals, we constructed four clone libraries of 16S rDNA sequences. One was amplified directly from tailing microbial DNA (named as Ci library) and three from cultures on the plates containing of 0.5 mM CdCl(2) (Cd library), 2 mM Pb (NO(3))(2) (Pb library), and without any metals (Cw library). In total, nine bacterial divisions and two unclassified groups were identified from 352 clones of these libraries. Ci clones covered eight divisions, whereas all cultivable clones only covered four divisions. Thus, Ci library provided more phylogenetic diversity than cultivable libraries. However, the microbes represented by the cultivable clones were more similar to previously described bacteria than those represented by Ci clones. All Ci clones were not found in three cultivable libraries. Cd library were exclusively Gram-negative bacteria of Acinetobacter, Ralstonia, Comamonas, and Chryseobacterium. Meanwhile, dominant Gram-positive bacteria in Pb library, Paenibacillus and Bacillus, were also not found in Cd library. Our data indicate that phylogenetic structure was very different from those in acid mine drainage. Meanwhile, tailings harbored phylogenetically distinct subcommunities resistant to Pb and Cd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.