Data privacy has become an increasingly important issue in Machine Learning (ML), where many approaches have been developed to tackle this challenge, e.g. cryptography (Homomorphic Encryption (HE), Differential Privacy (DP), etc. ) and collaborative training (Secure Multi-Party Computation (MPC), Distributed Learning and Federated Learning (FL)). These techniques have a particular focus on data encryption or secure local computation. They transfer the intermediate information to the third party to compute the final result. Gradient exchanging is commonly considered to be a secure way of training a robust model collaboratively in Deep Learning (DL). However, recent researches have demonstrated that sensitive information can be recovered from the shared gradient. Generative Adversarial Network (GAN), in particular, has shown to be effective in recovering such information. However, GAN based techniques require additional information, such as class labels which are generally unavailable for privacy-preserved learning. In this paper, we show that, in the FL system, image-based privacy data can be easily recovered in full from the shared gradient only via our proposed Generative Regression Neural Network (GRNN). We formulate the attack to be a regression problem and optimize two branches of the generative model by minimizing the distance between gradients. We evaluate our method on several image classification tasks. The results illustrate that our proposed GRNN outperforms state-of-the-art methods with better stability, stronger robustness, and higher accuracy. It also has no convergence requirement to the global FL model. Moreover, we demonstrate information leakage using face re-identification. Some defense strategies are also discussed in this work.
The development of the Internet of Things (IoT) stimulates many research works related to Multimedia Communication Systems (MCS), such as human face detection and tracking. This trend drives numerous progressive methods. Among these methods, the deep learning-based methods can spot face patch in an image effectively and accurately. Many people consider face tracking as face detection, but they are two different techniques. Face detection focuses on a single image, whose shortcoming is obvious, such as unstable and unsmooth face position when adopted on a sequence of continuous images; computing is expensive due to its heavy reliance on Convolutional Neural Networks (CNNs) and limited detection performance on the edge device. To overcome these defects, this paper proposes a novel face tracking strategy by combining CNN and optical flow, namely, C-OF, which achieves an extremely fast, stable, and long-term face tracking system. Two key things for commercial applications are the stability and smoothness of face positions in a sequence of image frames, which can provide more probability for face biological signal extraction, silent face antispoofing, and facial expression analysis in the fields of IoT-based MCS. Our method captures face patterns in every two consequent frames via optical flow to get rid of the unstable and unsmooth problems. Moreover, an innovative metric for measuring the stability and smoothness of face motion is designed and adopted in our experiments. The experimental results illustrate that our proposed C-OF outperforms both face detection and object tracking methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.