The disruption of endosomal actin architecture negatively affects endocytic recycling. However, the underlying homeostatic mechanisms that regulate actin organization during recycling remain unclear. In this study, we identified a synergistic endosomal actin assembly restricting mechanism in C. elegans involving WTS-1/LATS kinase, which is a core component of the Hippo pathway. WTS-1 resides on the sorting endosomes and colocalizes with the actin polymerization regulator PTRN-1/CAMSAPs. We observed an increase in PTRN-1-labeled structures in WTS-1-deficient cells, indicating that WTS-1 can limit the endosomal localization of PTRN-1. Accordingly, the actin overaccumulation phenotype in WTS-1-depleted cells was mitigated by the associated PTRN-1 loss. We further demonstrated that recycling defects and actin overaccumulation in WTS-1-deficient cells were reduced by the overexpression of constitutively active UNC-60A/cofilin(S3A), which aligns with the role of LATS as a positive regulator of cofilin activity. Altogether, our data confirmed previous findings, and we proposed an additional model: WTS-1 acts alongside the UNC-60A/cofilin-mediated actin disassembly to restrict the assembly of endosomal F-actin by curbing PTRN-1 dwelling on endosomes, preserving recycling transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.