Fluctuation terms and higher moments of a quantum state imply corrections to the classical equations of motion that may have implications in early-universe cosmology, for instance in the state-dependent form of effective potentials. In addition, space-time properties are relevant in cosmology, in particular when combined with quantum corrections required to maintain general covariance in a consistent way. Here, an extension of previous investigations of static quasiclassical space-time models to dynamical ones is presented, describing the evolution of 1-dimensional space as in the classical Lemaitre–Tolman–Bondi models. The corresponding spatial metric has two independent components, both of which are in general subject to quantum fluctuations. The main result is that individual moments from both components are indeed required for general covariance to be maintained at a semiclassical level, while quantum correlations between the components are less relevant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.