The aim of this study was to investigate whether endurance training reduces exercise-induced oxidative stress in erythrocytes. Male rats (n=54) were divided into trained (n=28) and untrained (n=26) groups. Both groups were further divided equally into two groups where the rats were studied at rest and immediately after exhaustive exercise. Endurance training consisted of treadmill running 1.5 h x day(-1), 5 days a week for 8 weeks, reaching the speed of 2.1 km x h(-1) at the fourth week. For acute exhaustive exercise, graded treadmill running was conducted reaching the speed of 2.1 km x h(-1) at the 95th min, 10% uphill, and was continued until exhaustion. Acute exhaustive exercise increased the erythrocyte malondialdehyde level in sedentary but not in trained rats compared with the corresponding sedentary rest and trained rest groups, respectively. While acute exhaustive exercise decreased the erythrocyte superoxide dismutase activity in sedentary rats, it increased the activity of this enzyme in trained rats. On the other hand, acute exhaustive exercise increased the erythrocyte glutathione peroxidase activity in sedentary rats; however, it did not affect this enzyme activity in trained rats. Erythrocyte glutathione peroxidase activity was higher in trained groups compared with untrained sedentary group. Neither acute exhaustive exercise nor treadmill training affected the erythrocyte total glutathione level. Treadmill training increased the endurance time in trained rats compared with sedentary rats. The results of this study suggest that endurance training may be useful to prevent acute exhaustive exercise-induced oxidative stress in erythrocytes by up-regulating some of the antioxidant enzyme activities and may have implications in exercising humans.
The aim of this study was to determine the effects of Hippophae rhamnoides L. extract (HRe-1) and also vitamin E as a positive control on nicotine-induced oxidative stress in rat blood, specifically alterations in erythrocyte malondialdehyde (MDA) level, activities of some erythrocyte antioxidant enzymes, and plasma vitamin E and A levels. The groups were: nicotine (0.5 mg/kg/d, intraperitoneal, i.p.); nicotine؉vitamin E (75 mg/kg/d, intragastric, i.g.); nicotine؉HRe-1 (1 ml/kg/d, i.g.); and control group (receiving only vehicles). There were 8 rats per group and the supplementation period was 3 weeks. Nicotine-induced increase in erythrocyte MDA level was prevented by both HRe-1 and vitamin E. Nicotine-induced decrease in erythrocyte superoxide dismutase (SOD) activity was prevented by HRe-1, but not vitamin E. HRe-1 increased the erythrocyte glutathione peroxidase (GSH-Px) activity compared with nicotine and the vitamin E groups. Catalase activity was not affected. Vitamin E supplementation increased plasma vitamin E level. Plasma vitamin A level was higher in both vitamin E and HRe-1 supplemented groups compared with nicotine and control groups. The results suggest that HRe-1 extract can be used as a dietary supplement, especially by people who smoke, in order to prevent nicotine-induced oxidative stress.
Earlier studies have reported right-sided lateralization for different organ cancers except breast cancer. In the present study, lateralization of head-neck cancers and their relation with the peripheral cell-mediated immune asymmetry was investigated. The sample was comprised of 42 men and 20 women diagnosed with cancer in the head-neck region. The diagnosis of cancer was made histopathologically. To measure the cell-mediated (type IV) immunity of both forearms, the tuberculin test (PPD test) was used in the subjects previously sensitized by BCG vaccine during the first year of age. Significant right-sided lateralization in men and the significant left-sided lateralization in women were observed in this study. There was no relation between the lateralization of cancer and the asymmetry of tuberculin reaction or the peripheral cell-mediated immune asymmetry.
Effects of nicotine, and nicotine + vitamin E on glucose 6-phosphate dehydrogenase (G-6PD) activity in rat muscle, heart, lungs, testicle, kidney, stomach, brain and liver were investigated in vivo and in vitro on partially purified homogenates. Supplementation period was 3 weeks (n = 8 rats per group): nicotine [0.5 mg/kg/day, intraperitoneal (ip)]; nicotine + vitamin E [75 mg/kg/day, intragastric (ig)]; and control group (receiving only vehicle). The results showed that nicotine (0.5 mg/kg, ip) inhibited G-6PD activity in the lungs, testicle, kidney, stomach and brain by 12.5% (p < 0.001), 48% (p < 0.001), 20.8% (p < 0.001), 13% (p < 0.001) and 23.35% (p < 0.001) respectively, and nicotine had no effects on the muscle, heart and liver G6PD activity. Also, nicotine + vitamin E inhibited G-6PD activity in the testicle, brain, and liver by 32.5% (p < 0.001), 21.5% (p < 0.001), and 16.5% (p < 0.001) respectively, and nicotine + vitamin E activated the muscle, and stomach G-6PD activity by 36% (p < 0.05), and 20% (p < 0.001) respectively. In addition, nicotine + vitamin E did not have any effects on the heart, lungs, and kidney G-6PD activity. In addition, in vitro studies were also carried out to elucidate the effects of nicotine and vitamin E on G-6PD activity, which correlated well with in vivo experimental results in lungs, testicles, kidney, stomach, brain and liver tissues. These results show that vitamin E administration generally restores the inactivation of G-6PD activity due to nicotine administration in various rat tissues in vivo, and also in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.