While recent years have witnessed a rapid growth of research papers on recommender system (RS), most of the papers focus on inventing machine learning models to better fit user behavior data. However, user behavior data is observational rather than experimental. This makes various biases widely exist in the data, including but not limited to selection bias, position bias, exposure bias, and popularity bias. Blindly fitting the data without considering the inherent biases will result in many serious issues, e.g., the discrepancy between offline evaluation and online metrics, hurting user satisfaction and trust on the recommendation service, etc. To transform the large volume of research models into practical improvements, it is highly urgent to explore the impacts of the biases and perform debiasing when necessary. When reviewing the papers that consider biases in RS, we find that, to our surprise, the studies are rather fragmented and lack a systematic organization. The terminology "bias" is widely used in the literature, but its definition is usually vague and even inconsistent across papers. This motivates us to provide a systematic survey of existing work on RS biases. In this paper, we first summarize seven types of biases in recommendation, along with their definitions and characteristics. We then provide a taxonomy to position and organize the existing work on recommendation debiasing. Finally, we identify some open challenges and envision some future directions, with the hope of inspiring more research work on this important yet less investigated topic.
While recent years have witnessed a rapid growth of research papers on recommender system (RS), most of the papers focus on inventing machine learning models to better fit user behavior data. However, user behavior data is observational rather than experimental. This makes various biases widely exist in the data, including but not limited to selection bias, position bias, exposure bias, and popularity bias. Blindly fitting the data without considering the inherent biases will result in many serious issues, e.g., the discrepancy between offline evaluation and online metrics, hurting user satisfaction and trust on the recommendation service, etc. To transform the large volume of research models into practical improvements, it is highly urgent to explore the impacts of the biases and perform debiasing when necessary. When reviewing the papers that consider biases in RS, we find that, to our surprise, the studies are rather fragmented and lack a systematic organization. The terminology “bias” is widely used in the literature, but its definition is usually vague and even inconsistent across papers. This motivates us to provide a systematic survey of existing work on RS biases. In this paper, we first summarize seven types of biases in recommendation, along with their definitions and characteristics. We then provide a taxonomy to position and organize the existing work on recommendation debiasing. Finally, we identify some open challenges and envision some future directions, with the hope of inspiring more research work on this important yet less investigated topic. The summary of debiasing methods reviewed in this survey can be found at https://github.com/jiawei-chen/RecDebiasing.
Recommender systems rely on user behavior data like ratings and clicks to build personalization model. However, the collected data is observational rather than experimental, causing various biases in the data which significantly affect the learned model. Most existing work for recommendation debiasing, such as the inverse propensity scoring and imputation approaches, focuses on one or two specific biases, lacking the universal capacity that can account for mixed or even unknown biases in the data.Towards this research gap, we first analyze the origin of biases from the perspective of risk discrepancy that represents the difference between the expectation empirical risk and the true risk. Remarkably, we derive a general learning framework that well summarizes most existing debiasing strategies by specifying some parameters of the general framework. This provides a valuable opportunity to develop a universal solution for debiasing, e.g., by learning the debiasing parameters from data. However, the training data lacks important signal of how the data is biased and what the unbiased data looks like. To move this idea forward, we propose AotoDebias that leverages another (small) set of uniform data to optimize the debiasing parameters by solving the bi-level optimization problem with meta-learning. Through theoretical analyses, we derive the generalization bound for AutoDebias and prove its ability to acquire the appropriate debiasing strategy. Extensive experiments on two real datasets and a simulated dataset demonstrated effectiveness of AutoDebias. The code is available at https://github.com/DongHande/AutoDebias.
The original design of Graph Convolution Network (GCN) couples feature transformation and neighborhood aggregation for node representation learning. Recently, some work shows that coupling is inferior to decoupling, which supports deep graph propagation and has become the latest paradigm of GCN (e.g., APPNP [14] and SGCN [30]). Despite effectiveness, the working mechanisms of the decoupled GCN are not well understood.In this paper, we explore the decoupled GCN for semi-supervised node classification from a novel and fundamental perspectivelabel propagation. We conduct thorough theoretical analyses, proving that the decoupled GCN is essentially the same as the two-step label propagation: first, propagating the known labels along the graph to generate pseudo-labels for the unlabeled nodes, and second, training normal neural network classifiers on the augmented pseudo-labeled data. More interestingly, we reveal the effectiveness of decoupled GCN: going beyond the conventional label propagation, it could automatically assign structure-and model-aware weights to the pseudo-label data. This explains why the decoupled GCN is relatively robust to the structure noise and over-smoothing, but sensitive to the label noise and model initialization. Based on this insight, we propose a new label propagation method named Propagation then Training Adaptively (PTA), which overcomes the flaws of the decoupled GCN with a dynamic and adaptive weighting strategy. Our PTA is simple yet more effective and robust than
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.