BackgroundBacterial resistance to antibiotics is increasing worldwide. Antibiotic-resistant strains can lead to serious problems regarding treatment of infection. Carbapenem antibiotics are the final treatment option for infections caused by serious and life-threatening multidrug-resistant gram-negative bacteria. Therefore, an understanding of carbapenem resistance is important for infection control. In the study described herein, the phenotypic and genotypic features of carbapenem-resistant Enterobacteriaceae strains isolated in our hospital were evaluated.MethodsIn total, 43 carbapenem-resistant strains were included in this study. Sensitivity to antibiotics was determined using the VITEK®2 system. The modified Hodge test (MHT) and metallo-β-lactamase (MBL) antimicrobial gradient test were performed for phenotypic identification. Resistance genes IMP, VIM, KPC, NDM-1, and OXA-48 were amplified by multiplex PCR.ResultsThe OXA-48 gene was detected in seven strains, and the NDM-1 gene in one strain. No resistance genes were detected in the remainder of strains. A significant correlation was observed between the MHT test and OXA-48 positivity, and between the MBL antimicrobial gradient test and positivity for resistance genes (p < 0.05).ConclusionThe finding of one NDM-1-positive isolate in this study indicates that carbapenem resistance is spreading in Turkey. Carbapenem resistance spreads rapidly and causes challenges in treatment, and results in high mortality/morbidity rates. Therefore, is necessary to determine carbapenem resistance in Enterobacteriaceae isolates and to take essential infection control precautions to avoid spread of this resistance.
Impaired red blood cell deformability is a hemorheological perturbation induced by many kinds of diseases. An increase in free radicals causes a reduction in erythrocyte flexibility and deformability. Carnosine is a dipeptide abundant in skeletal muscle and brain of humans. One of the main function of carnosine is its antioxidant and free-radical scavenger effect. In this study our aim is to investigate the protective effect of L-carnosine on RBCs in H 2 O 2 -induced oxidative stress in vitro conditions.Twenty male wistar albino rats, 10 were 3 months old, 10 were 12 months old used. The blood from each rat were divided into ten tubes and these blood samples divided into two groups. The first tube of the first group was the control and the rest 4 tubes were treated with different concentrations of L-carnosine. All tubes in the second group were incubated with H 2 O 2 additively. The deformability indexes of the erythrocytes were measured by a laser diffractometer (Myrenne Rheodyne SSD).L-carnosine has improved the RBC deformability significantly which is impaired by H 2 O 2 treatment (p < 0.05). Increase in deformability is more significant in young rat group when compared to old rat group.L-carnosine, as an antioxidant molecules, has a dose dependent positive effect on RBC deformability and has improved or protect the deformability of erythrocytes, especially in young rat group which impaired by H 2 O 2 -induced oxidative stress in vitro conditions. The results of this study first suggest that L-carnosine supplemention can be used to improve the RBC quality or to protect them from oxidative damage in survival of RBC in the circulation.
Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.
Further more detailed studies are needed to find out the effects of drugs on these parameters or to disclose the exact mechanism underlying the alteration of these parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.