In the context of global warming, more and more cities are experiencing extreme Urban Heat Island (UHI) effects and extreme weather phenomena, but urban green spaces are proven to mitigate UHI. Most of UHI’s research focuses on the large scale and uses remote sensing methods, which do not reflect the dynamic characteristics in detail and do not detect internal influencing factors of the green space cooling effect. Therefore, this study focused on Small Green Spaces (SGS), carrying out the measurement of the meteorological parameters (temperature, relative humidity, wind direction, wind speed, photosynthetic radiation) of the 16 sites in four types of coverage (Impervious surface; Shrub-grass; Tree-grass; Tree-shrub-grass) in a university campus. At the same time, the coverage characteristic parameters, such as Canopy Density (CD), Leaf Area Index (LAI), Photosynthetically Active Radiation (PAR), Mean Leaf Angle (MLA), of each plot were analyzed and compared. The results showed that there were significant differences in temperature among different coverage types in SGS. The biggest difference was concentrated in the noon period when solar radiation is strongest during the day. The difference between the four types of coverage with vegetation at night was small. The maximum air temperature difference among the four types could reach 8.9 ℃ and the maximum relative humidity difference was 28.5%. The cooling effect of the multi-layer vegetation-covered (Tree-shrub-grass) area was the largest compared to the impervious surface, indicating that tree cover was the core factor affecting the temperature. Temperature and relative humidity had a close correlation with surface coverage types and some plant community characteristics (such as CD and LAI). The cooling and humidifying effects of plants were also related to PAR and leaf angle. The results provide suggestions for green space management and landscape design.
Extreme heat wave weather phenomena have erupted worldwide in recent years. The urban heat island (UHI) effect has exacerbated urban heat waves with serious consequences for urban energy and residents’ health. Therefore, a better understanding of the dynamics of the UHI effect and the influencing factors is needed in the context of carbon neutrality and global warming. This study used long-term observation and statistical data to investigate the urban heat island intensity (UHII) over the past 39 years (1981–2019) and to analyze the temporal changes of the UHI effect and the relationship between the UHI effect and indicators of rapid urbanization in Zhengzhou, China. The results showed that Zhengzhou is warming 2.2-times faster than the global land warming trend of about +0.9 °C from 1981 to 2019. There is a clear phase characteristic of the heat island effect in Zhengzhou, and it offers a rapid upward trend after 2000 and a positive correlation with the urbanization process; it was found that the social and economic conditions of urban expansion in Zhengzhou have a significant relationship with UHII. We also found that the denser the urban built-up area, the more obvious the heat island effect. Compared with other countries, the influence of national policies on urban development is an indirect factor influencing the change of UHI specifically for Chinese cities. This research could provide a reference for understanding the temporal dynamics of UHI in an expanding large city for sustainable urban planning and mitigating urban warming and environmental problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.